Background: Genetic alterations cause Hereditary Diseases (HDs) with a wide range of incidences. Some, like cystic fibrosis, occur frequently (1/1,000 newborns), whilst others, such as Pompe disease and other metabolic disorders are very rare (1/100,000 newborns). They are well under the threshold of 1/3,000, denoted by the European Community as Rare Diseases (RDs). Genetic alterations are also associated with multifactorial disorders like diabetes, and underline both somatic and germline mutations in cancer. Nowadays, thanks to the interventions of the European Union and the American National Health Institute as well as others, Hds are under an international lense, which has stimulated discussions and research targeting gene identification, prenatal diagnosis and care optimization leading to the development of new treatment options. Nanomedicine is paving the way toward some highly appealing clinical and research avenues in HDs. Nanotechnologies lend themselves to many aspects in human healthcare, such as in vitro diagnostics (nanobiosensors and nanoplatforms), drug delivery (nanovectors), drug monitoring (nanosensors) and artificial organs to study the genome variant meaning (nanostructures).
Methods And Results: With a significant reduction in costs and simplified healthcare delivery, nanodiagnostics can potentially provide the tools to diagnose diseases at an early stage with precision. In vitro nanodiagnostics are already diagnosing RDs, with many nanodevices having been successfully introduced over the last few decades. Nanovectors represent an emerging approach in drug delivery and treatment for several diseases such as cancers, infectious diseases, cardiovascular disorders and neurological pathologies. Artificial tissues have valuable implications in replacing compromised organs, thus offering unique opportunities to explore pathogenic mechanisms as well as new drug targets in a personalized context.
Conclusion: This article outlines and discusses the recent progress in nanotechnology and its potential applications in HDs. It is a pivotal field for research and innovation in healthcare, with emphasis on diagnostics, disease monitoring, biomarker assaying and drug delivery. We underlined the nanomethod's capacity to identify genetic alterations and the follow up of important aspects of the disease course, including therapies. We extensively described the new field of nanodelivery for experimental drugs, focusing on new genetic therapies and their implications in hereditary disorders. We also detailed innovative tools as artificial tissues based on nanomatrices and their use to identify or study genetic alterations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612824666180110151318 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200438, China.
Aging is a complex process that affects multiple organs, and the discovery of a pharmacological approach to ameliorate aging is considered the Holy Grail of medicine. Here, we performed an N-ethyl-N-nitrosourea forward genetic screening in zebrafish and identified an accelerated aging mutant named (), harboring a mutation in the - () gene. Loss of leads to a short lifespan and age-related characteristics in the intestine of zebrafish embryos, such as cellular senescence, genomic instability, and epigenetic alteration.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
College of life Sciences, Sichuan Normal University, Chengdu, Sichuan, China.
Poly-gamma-glutamic acid (γ-PGA) is mainly synthesized by glutamate-dependent strains in the manufacturing industry. Therefore, understanding glutamate-dependent mechanisms is imperative. In this study, we first systematically analyzed the response of Bacillus subtilis SCP017-03 to glutamate addition by comparing transcriptomics and proteomics.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, United States of America.
Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.
View Article and Find Full Text PDFJCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!