The commercialization of nonfullerene organic solar cells (OSCs) critically relies on the response under typical operating conditions (for instance, temperature and humidity) and the ability of scale-up. Despite the rapid increase in power conversion efficiency (PCE) of spin-coated devices fabricated in a protective atmosphere, the efficiencies of printed nonfullerene OSC devices by blade coating are still lower than 6%. This slow progress significantly limits the practical printing of high-performance nonfullerene OSCs. Here, a new and relatively stable nonfullerene combination is introduced by pairing the nonfluorinated acceptor IT-M with the polymeric donor FTAZ. Over 12% efficiency can be achieved in spin-coated FTAZ:IT-M devices using a single halogen-free solvent. More importantly, chlorine-free, blade coating of FTAZ:IT-M in air is able to yield a PCE of nearly 11% despite a humidity of ≈50%. X-ray scattering results reveal that large π-π coherence length, high degree of face-on orientation with respect to the substrate, and small domain spacing of ≈20 nm are closely correlated with such high device performance. The material system and approach yield the highest reported performance for nonfullerene OSC devices by a coating technique approximating scalable fabrication methods and hold great promise for the development of low-cost, low-toxicity, and high-efficiency OSCs by high-throughput production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201705485DOI Listing

Publication Analysis

Top Keywords

nonfullerene organic
8
organic solar
8
solar cells
8
nonfullerene osc
8
osc devices
8
blade coating
8
nonfullerene
6
surpassing 10%
4
10% efficiency
4
efficiency benchmark
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!