Predicting the binding affinity between protein monomers is of paramount importance for the understanding of thermodynamical and structural factors that guide the formation of a complex. Several numerical techniques have been developed for the calculation of binding affinities with different levels of accuracy. Approaches such as thermodynamic integration and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodologies which account for well defined physical interactions offer good accuracy but are computationally demanding. Methods based on the statistical analysis of experimental structures are much cheaper but good performances have only been obtained throughout consensus energy functions based on many different molecular descriptors. In this study we investigate the importance of the contribution to the binding free energy of the entropic term due to the fluctuations around the equilibrium structures. This term, which we estimated employing an elastic network model, is usually neglected in most statistical approaches. Our method crucially relies on a novel calibration procedure of the elastic network force constant. The residue mobility profile is fitted to the one obtained through a short all-atom molecular dynamics simulation on a subset of residues only. Our results show how the proper consideration of vibrational entropic contributions can improve the quality of the prediction on a set of non-obligatory protein complexes whose binding affinity is known.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.25454 | DOI Listing |
Viruses
December 2024
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina.
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.
View Article and Find Full Text PDFViruses
November 2024
Department of Biology, Faculty of Medicine, Aix-Marseille University, INSERM UA16, 13015 Marseille, France.
Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
Echinococcosis is a zoonotic infectious disease that poses a significant threat to the health of individuals living in rural regions. While vaccination represents a potential strategy for disease prevention, there is currently no effective vaccine available for humans to prevent cystic echinococcosis (CE). This study aimed to design a novel multi-epitope vaccine (MEV) against Echinococcus granulosus for human use, employing immunoinformatics methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Central Hospital of Dalian University of Technology, Dalian 116021, China.
Non-small cell lung cancer (NSCLC) is the predominant form of lung cancer and poses a significant public health challenge. Early detection is crucial for improving patient outcomes, with serum biomarkers such as carcinoembryonic antigen (CEA), squamous cell carcinoma antigen (SCCAg), and cytokeratin fragment 19 (CYFRA 21-1) playing a critical role in early screening and pathological classification of NSCLC. However, due to being mainly based on corresponding antibody binding reactions, existing detection technologies for these serum biomarkers have shortcomings such as complex operations, high false positive rates, and high costs.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!