Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model.

Drug Des Devel Ther

Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada.

Published: August 2018

Objectives: A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from are currently prescribed to treat Dupuytren's and Peyronie's contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model.

Materials And Methods: Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III.

Results/conclusion: Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° (-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining (<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged (>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743116PMC
http://dx.doi.org/10.2147/DDDT.S144602DOI Listing

Publication Analysis

Top Keywords

rat knee
12
flexion contracture
12
range motion
8
knee flexion
8
contracture model
8
posterior capsule
8
knee
5
contracture
5
intra-articular collagenase
4
collagenase injection
4

Similar Publications

Objective: Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms.

View Article and Find Full Text PDF

Chondroprotective Effect of Extract in Primary Chondrocytes and Rat OA Model.

Int J Mol Sci

December 2024

Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea.

() was extracted using fermented ethanol. The effect of fermented ethanol extract of (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly inhibited the accumulation of nitric oxide and prostaglandin E, which was analyzed using the ELISA assay.

View Article and Find Full Text PDF

Gentiopicroside ameliorates synovial inflammation and fibrosis in KOA rats by modulating the HMGB1-mediated PI3K/AKT signaling axis.

Int Immunopharmacol

January 2025

Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China. Electronic address:

Background: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by synovial inflammation and fibrosis. Gentiopicroside (GPS), one of the main active ingredients of Gentiana macrophylla, is widely used in anti-inflammatory and anti-fibrotic therapies. However, the exact mechanism by which GPS treats synovial inflammation and fibrosis in KOA remains unclear.

View Article and Find Full Text PDF

The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction leads to chondrocyte aging, contributing to osteoarthritis (OA) and it remains uncertain if mesenchymal stem cells (MSCs) can help restore mitochondrial function in chondrocytes or reverse OA progression.
  • The study utilized mitochondria-rich extracellular vesicles (MEV) from stem cells to determine their impact on both healthy and stressed human articular chondrocytes in vitro, and further tested their effects in OA rats.
  • Findings revealed that MEV could enter chondrocytes, reduce oxidative stress markers, enhance mitochondrial function, and effectively reduce cartilage degeneration in OA rats, suggesting a potential therapeutic approach for OA management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!