Silica nanoparticle stability in biological media revisited.

Sci Rep

Department of Chemistry and Education, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.

Published: January 2018

The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760698PMC
http://dx.doi.org/10.1038/s41598-017-18502-8DOI Listing

Publication Analysis

Top Keywords

stability silica
16
biological media
8
silica nanostructures
8
silica
7
stability
5
silica nanoparticle
4
nanoparticle stability
4
stability biological
4
media revisited
4
revisited stability
4

Similar Publications

Magnetic Janus SiO nanoparticles immobilized protease mutant T70I as a novel clarification agent for juice processing.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China; Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou, Jiangsu 213001, PR China. Electronic address:

The juice processing industry offers several benefits, including promoting health and wellness through the delivery of beverages rich in nutrients. Nonetheless, the industry encounters significant challenges regarding new technologies for processing and preservation given that they can be costly and labor-intensive. In this study, magnetic Janus silica (SiO) nanoparticle which offers multifunctionality and high stability was synthesized and subsequently immobilized with a protease mutant T70I (T70I@MSNs) to serve as a clarifying agent in juice.

View Article and Find Full Text PDF

Robust Immobilization and Activity Preservation of Enzymes in Porous Frameworks by Silica-Based "Inorganic Glue".

Adv Mater

December 2024

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.

The development of novel methods to enhance enzyme-carrier interactions in situ, at a feasible cost, and on a large scale is crucial for improving the stability and durability of current immobilized enzyme systems used in industrial settings. Here, a pioneering approach termed "silica-based inorganic glue" is proposed, which utilizes protein-catalyzed silicification to fix enzyme within porous matrix while preserving enzyme activity. This innovative strategy offers several key benefits, including conformational stabilization of enzymes, improved interactions between enzymes and the matrix, prevention of enzyme leakage, and mitigation of pore blocking.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

The Role of Biosilica and Its Potential for Sensing Technologies: A Review.

J Biotechnol

December 2024

Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.

Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21 century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!