Macroparasite dynamics of migratory host populations.

Theor Popul Biol

Ecology and Evolutionary Biology, University of Toronto, Canada; Biological Sciences, University of Toronto Scarborough, Canada.

Published: March 2018

Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there are few spatially explicit models of host-macroparasite dynamics. This limits our understanding of parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper, we develop a model for host-macroparasite dynamics that considers the directional movement of host populations and their associated parasites. We include spatiotemporal changes in the mean and variance in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead to parasite-induced migratory stalling. This framework could help understand how global change might influence wildlife disease via changes to migratory patterns and parasite demographic rates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tpb.2017.12.005DOI Listing

Publication Analysis

Top Keywords

migratory ability
12
host populations
8
host-macroparasite dynamics
8
ability increasing
8
parasite burdens
8
migratory
7
host
5
macroparasite dynamics
4
dynamics migratory
4
migratory host
4

Similar Publications

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Monarch butterflies in North America migrate south each autumn, but the mechanisms that initiate their migratory flight remain incompletely understood. We investigated environmental, developmental, and genetic factors that contribute to directional flight by testing summer and autumn-generation monarchs in three flight simulators: two at ground level (with and without wind blockage) and a novel balloon-based system that raised butterflies 30 meters into the air. Monarchs reared under autumn-like conditions in a growth chamber during the summer were also tested to explore the influence of developmental cues.

View Article and Find Full Text PDF

Unlabelled: During vertebrate development, the heart primarily arises from mesoderm, with crucial contributions from cardiac neural crest cells that migrate to the heart and form a variety of cardiovascular derivatives. Here, by integrating bulk and single cell RNA-seq with ATAC-seq, we identify a gene regulatory subcircuit specific to migratory cardiac crest cells composed of key transcription factors and . Notably, we show that cells expressing the canonical neural crest gene are essential for proper cardiac regeneration in adult zebrafish.

View Article and Find Full Text PDF

The treatment of metastatic melanoma has long posed a complex challenge within clinical practice. Previous studies have found that EMT transcription factors are essential in the development of various cancers through their induction of EMT. Here, we demonstrate that Snail2 expression is dramatically increased in melanoma and is associated with an adverse prognosis.

View Article and Find Full Text PDF

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!