Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven't been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC of 34 nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC of 9 μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2017.12.041 | DOI Listing |
Bioorg Med Chem
February 2018
School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, Jiangsu, China; Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven't been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!