Background: Acute ruminal lactic acidosis (ARLA) is a major nutritional and metabolic disorder usually characterized by excessive or non-adapted intake of diets rich in nonstructural carbohydrates. Feed additives that regulate the ruminal environment have been used to prevent ARLA, such as ionophores and, more recently, yeast culture. Thus, we aimed to compare the efficacy of a yeast-based culture (Saccharomyces cerevisiae) with that of monensin sodium in the prevention of ARLA in sheep. Eighteen male, crossbred, rumen-cannulated sheep were randomly distributed into three groups of six animals: control, yeast culture and monensin. Thirty days after the start of supplementation with yeast culture (4 × 10 cfu/animal/day of S. cerevisiae) and monensin (33 mg/kg of total dry matter intake), 15 g/kg BW of sucrose was administered directly into the rumen of the animals to induce ARLA. Samples of blood and ruminal fluid were collected at the following time points: at baseline (T0 h) immediately before the induction of ARLA; 6 h (T6 h); 12 h (T12 h); 18 h (T18 h); 24 h (T24 h); 36 h (T36 h); and 48 h (T48 h) after ARLA induction.
Results: Ruminal pH was higher in monensin group at T12 h and in yeast culture group at T36 h when compared to control group. Lower values of L-Lactate were found at yeast culture group at T24 h and T36 h. Monensin showed prophylactic effect by decreasing the rate of ruminal pH decline and occasionally reducing ruminal acidosis, whereas probiotics resulted in less accumulation of lactic acid in the rumen and a lower degree of systemic acidosis.
Conclusion: The use of yeast culture can be beneficial in the prevention and treatment of ARLA in sheep, because it can effectively reduce the accumulation of lactic acid, and thereby increase ruminal pH and reduce ruminal osmolarity. On the other hand, monensin showed prophylactic effect by decreasing the rate of ruminal pH decline and occasionally reducing ruminal acidosis, however, it did not directly prevent these conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759358 | PMC |
http://dx.doi.org/10.1186/s12917-017-1264-4 | DOI Listing |
Front Vet Sci
December 2024
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.
View Article and Find Full Text PDFCurr Med Mycol
May 2024
Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Background And Purpose: Onychomycosis is a common fungal infection that affects the nails, caused by various fungal agents. Moreover, yeast onychomycosis has increased in recent years. Yeast isolates might not be identified at the species level by conventional methods, whereas molecular methods can identify yeast isolates more accurately.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, PR China. Electronic address:
Drug Des Devel Ther
January 2025
Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Objective: Modified Zuo Gui Wan (MZGW) was a combination of Zuo Gui Wan and red yeast rice used for treating osteoporosis (OP), but its mechanism remains unclear. We aimed to validate the anti-OP effect of MZGW and explore its underlying mechanism.
Methods: An ovariectomy (OVX) rat model in vivo and a RANKL-induced osteoclasts (OCs) model in vitro were established.
Sci Rep
December 2024
Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA.
Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!