RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells.

Biotechnol J

Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane QLD 4072, Australia.

Published: March 2018

The development of next-generation sequencing technologies has opened new opportunities to better characterize complex eukaryotic cells. Chinese hamster ovary (CHO) cells play a primary role in therapeutic protein production, with currently five of the top ten blockbuster drugs produced in CHO. However, engineering superior CHO cells with improved production features has had limited success to date and cell lines are still developed through the generation and screening of large strain pools. Here, we applied RNA sequencing to contrast a high and a low monoclonal antibody producing cell line. Rigorous experimental design achieved high reproducibility between biological replicates, remarkably reducing variation to less than 10%. More than 14 000 gene-transcripts are identified and surprisingly 58% are classified as differentially expressed, including 2900 with a fold change higher than 1.5. The largest differences are found for gene-transcripts belonging to regulation of apoptosis, cell death, and protein intracellular transport GO term classifications, which are found to be significantly enriched in the high producing cell line. RNA sequencing is also performed on subclones, where down-regulation of genes encoding secreted glycoproteins is found to be the most significant change. The large number of significant differences even between subclones challenges the notion of identifying and manipulating a few key genes to generate high production CHO cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201700231DOI Listing

Publication Analysis

Top Keywords

cho cells
12
monoclonal antibody
8
antibody producing
8
cell lines
8
rna sequencing
8
producing cell
8
high
5
cho
5
cell
5
rna-seq highlights
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!