Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838521 | PMC |
http://dx.doi.org/10.1111/tpj.13822 | DOI Listing |
Molecules
December 2024
Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China.
, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.
View Article and Find Full Text PDFBiofouling
January 2025
The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
J Agric Food Chem
January 2025
Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China.
Thirteen new cyathane diterpene glycosides, hericinosides A-M (-), and six known analogs, were isolated from the rice media fermentation of the medicinal fungus . The sugar parts of and were highly modified, forming a unique 5/6/7/5/5/5 ring new skeleton system. All structures were elucidated based on spectroscopic data, and their relative configurations were determined according to the ROESY analysis.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiology XuanCheng City Central Hospital, Xuancheng, China.
Modern pharmacological studies have elucidated the presence of aconitine (AC) alkaloids, polysaccharides, and saponins as the primary bioactive constituents of Fuzi. Among these, benzoylaconine, a pivotal active compound, demonstrates notable pharmacological properties including antitumor, anti-inflammatory, and cardiovascular protective effects. In recent years, benzoylaconine has garnered significant attention in basic research on heart diseases, emerging as a focal point of investigation.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.
is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with , including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!