Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
New Findings: What is the central question of this study? To understand better the effects of acute hyperglycaemia on arterial stiffness in healthy young individuals, we assessed arterial stiffness in physically active men before and after reduced ambulatory physical activity to decrease insulin sensitivity. What is the main finding and its importance? During an oral glucose tolerance test, we identified an increase in leg arterial stiffness (i.e. reduced femoral artery compliance) only when subjects were inactive for 5 days (<5000 steps day ) and not when they were engaging in regular physical activity (>10,000 steps day ). These results demonstrate the deleterious consequence of acute reductions in daily physical activity on the response of the peripheral vasculature to acute hyperglycaemia.
Abstract: Acute hyperglycaemia has been shown to augment indices of arterial stiffness in patients with insulin resistance and other co-morbidities; however, conflicting results exist in healthy young individuals. We examined whether acute hyperglycaemia after an oral glucose tolerance test (OGTT) increases arterial stiffness in healthy active men before and after reduced ambulatory physical activity to decrease insulin sensitivity. High-resolution arterial diameter traces acquired from Doppler ultrasound allowed an arterial blood pressure (BP) waveform to be obtained from the diameter trace within a cardiac cycle. In 24 subjects, this method demonstrated sufficient agreement with the traditional approach for assessing arterial compliance using applanation tonometry. In 10 men, continuous recordings of femoral and brachial artery diameter and beat-to-beat BP (Finometer) were acquired at rest, 60 and 120 min of an OGTT before and after 5 days of reduced activity (from >10,000 to <5000 steps day ). Compliance and β-stiffness were quantified. Before the reduction in activity, the OGTT had no effect on arterial compliance or β-stiffness. However, after the reduction in activity, femoral compliance was decreased (rest, 0.10 ± 0.03 mm mmHg versus 120 min OGTT, 0.06 ± 0.02 mm mmHg ; P < 0.001) and femoral β-stiffness increased (rest, 8.7 ± 2.7 a.u. versus 120 min OGTT, 15.3 ± 6.5 a.u.; P < 0.001) during OGTT, whereas no changes occurred in brachial artery compliance (P = 0.182) or stiffness (P = 0.892). Insulin sensitivity (Matsuda index) was decreased after the reduction in activity (P = 0.002). In summary, in young healthy men the femoral artery becomes susceptible to acute hyperglycaemia after 5 days of reduced activity and the resultant decrease in insulin sensitivity, highlighting the strong influence of daily physical activity levels on vascular physiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093202 | PMC |
http://dx.doi.org/10.1113/EP086713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!