An effective dual-emission fluorescent metal-organic framework (MOF)-based nanoprobe has been established for ultrasensitive and rapid ratiometric detection of Cu . Such a nanoprobe was prepared by encapsulating fluorescein isothiocyanate (FITC), and Eu(III) complex-functionalized Fe O into the zeolitic imidazolate framework material (ZIF-8). In this nanoprobe, FITC was used as a reference signal, thus improving the influence of external uncertainties. The Eu-complex signal could be quenched after adding an amount of Cu . The ZIF-8 could enrich the target analytes, which can amplify the fluorescence signal due to the good adsorption properties of the ZIF-8. Based on above structural and compositional features, the detection limit of the nanoprobe is 0.1 nm for Cu , almost 2×10 times lower than the maximum allowable amount of Cu in drinking water, which constructed a platform for effective detection of Cu . Using the nanoprobe to detect Cu in aqueous solution is rapid and the probe still remained stable. Additionally, this sensor for the ratiometric fluorescence imaging of copper ions was also certified in real samples and live cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201704557 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City 273165, Shandong, China. Electronic address:
Development of accurate, convenient and portable methods for monitoring 4-aminophenol (4-AP) is extremely important because of its strong toxicity. Here, a ratiometric fluorescence sensor based on Ag-enhanced luminescence of Tb-DNA complexes has been presented for the detection of 4-AP. The luminescence of Tb-DNA complexes is enhanced about 30 times by Ag, which can trigger energy transfer from DNA to Tb more efficiently.
View Article and Find Full Text PDFTalanta
December 2024
Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China. Electronic address:
Unreasonable or illegal utilization of pesticides may lead to pollution of agricultural products, especially with some persistent but effective pesticides. Hence, there is an urgent need to develop sensitive and rapid methods for pesticide detection to ensure the safety of agricultural products. Herein, a dual-mode ratiometric sensing system utilizing two gold nanoclusters (G/R-AuNCs) was designed and constructed for paraquat (PQ) detection, a typical, highly toxic, widely used pesticide.
View Article and Find Full Text PDFFood Chem
December 2024
Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:
Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
In this study, 3,4-diaminobenzoic acid (DABA) was introduced into the porphyrin metal-organic framework (PCN-224) for the first time to prepare a ratiometric fluorescent probe (PCN-224-DABA) to quantitatively detect ferric iron (Fe(III)) and selenium (IV) (Se(IV)). The fluorescence attributed to the DABA of PCN-224-DABA at 345 nm can be selectively quenched by Fe(III) and Se(IV), but the fluorescence emission peak attributed to tetrakis (4-carboxyphenyl) porphyrin (TCPP) at 475 nm will not be disturbed. Therefore, the ratio of I/I with an excitation wavelength of 270 nm can be designed to determine Fe(III) and Se(IV).
View Article and Find Full Text PDFAnal Chem
December 2024
Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!