The enantiomeric resolution of DL-alanine-DL-tryptophan dipeptide is described on amylose stationary phase. The eluent used was CH OH─CH COONH (10mM)─CH CN (50: 40, 10) at 0.8-mL/min flow, 230-nm detection, 25-minute run time, and 25°C ± 1°C temperature. The chiral phase was amylose [AmyCoat RP (15 cm × 0.46 cm × 5 micron)]. The magnitudes of the retention factors (k) were 2.71, 3.52, 5.11, and 7.75. The magnitudes of separation factor (α) were 1.19, 1.57, and 1.51 while the resolution factors (Rs) were 3.25, 14.84, and 15.76. The limits of detection and quantitation were of 2.5 to 5.4 and 12.8 to 27.5 μg/mL. The enantiomeric resolution is controlled by hydrogen, hydrophobic, π-π, steric, etc interactions. The elution order of the enantiomer was supported by the modeling data. The described method is fast, reproducible, precise, and selective, which can be used successfully for evaluating the enantiomers of the reported dipeptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.22813 | DOI Listing |
Chirality
January 2025
Department of Chemistry, Shyam Lal College, University of Delhi, New Delhi, India.
Enantiomeric analysis of chiral drugs is very significant, as their enantiomers display different pharmacological or toxicological behavior towards living systems. Among these drugs, β-blockers are available as racemates, where their enantiomers display different pharmacological effects. Herein, we report enantioselective separation of two β-blockers, namely, atenolol and sotalol, using a derivatization approach.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, STSN Government Degree College, Kadiri, Sri Sathya Sai (Dist., Andhra Pradesh-515591, India.
The production of enantiomerically pure compounds remains a vital and valuable objective in modern organic chemistry due to their broad applications in fields such as biosensing, optics, electronics, photonics, catalysis, nanotechnology, and drug or DNA delivery. Optically pure α-hydroxy ketones, in particular, are key structural components in many drugs and natural products with significant biological activity. Among these, benzoin type α-hydroxy ketones, which possess two adjacent functional groups, a carbonyl and a hydroxy group, are especially important.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy. Electronic address:
Bacterial monoamine oxidases (MAOs) are FAD-dependent proteins catalyzing a relevant reaction for many industrial biocatalytic applications, ranging from production of enantiomerically pure building blocks for pharmaceutical synthesis to biosensors for monitoring food and beverage quality. The thermostable MAO enzyme from Thermoanaerobacterales bacterium (MAO) is about 36 % identical to both putrescine oxidase and human MAOs and can be efficiently produced in Escherichia coli. MAO preferentially acts on n-alkyl monoamines but shows detectable activity also on polyamines and aromatic monoamines.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, University of Zurich, Zurich, Switzerland.
Chirality plays a critical role in the biochemistry of life and often only one enantiomeric series is observed (homochirality). Only a few natural products have been obtained as racemates, e.g.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
The 1,3-dithiolane ring has been recently rehabilitated as a chemical scaffold in drug design. However, for derivatives that are substituted in position 4, the introduction of a chiral center on the heterocycle demands the separation and characterization of the stereoisomers. We report the first chiral resolution and absolute configuration (AC) assignment for (1,4-dithiaspiro[4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!