Introduction: Macrophage infiltration may play an important role in mediating the development of muscle atrophy. However, temporal differences in the activation of muscle atrophy signaling pathways and the progress of macrophage infiltration during the atrophic phases of cast immobilization are currently unknown.
Methods: C57BL/6J mice were euthanized after cast immobilization at 1, 3, 7, and 14 days.
Results: Skeletal muscle macrophage numbers were unchanged on days 1 and 3 after immobilization, but were elevated on days 7 (2.7-fold, P < 0.01) and 14 (4.1-fold, P < 0.01). Ubiquitin ligase expression was increased 1 and 3 days after cast immobilization, as was the LC3-II/LC3-I ratio.
Discussion: Atrophy signaling pathway activation, but not macrophage infiltration, was observed during the early phase after cast immobilization. Our findings indicate that macrophage infiltration may contribute very little to the early phase of muscle atrophy after cast immobilization. Muscle Nerve 57: 1006-1013, 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.26061 | DOI Listing |
Surv Ophthalmol
January 2025
Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.
Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. The systematic review covers the progress in the last 2 decades about the classification and isolation of EVs and their role in DED.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFCancer Med
January 2025
Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Background: This study aims to elucidate the expression pattern of SERPINE1, assess its prognostic significance, and explore potential therapeutic drugs targeting this molecule.
Methods And Results: In this study, we delved into the variations in gene mutation, methylation patterns, and expression levels of SERPINE1 in head and neck squamous cell carcinoma (HNSCC) and normal tissues, leveraging comprehensive analyses of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The connection between the biological function of the gene and prognosis was scrutinized through immune infiltration and enrichment analyses.
J Clin Invest
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!