The emergence and rapid spread of novel DS-1-like intergenogroup reassortant rotaviruses having the equine-like G3 genotype (DS-1-like G3P[8] strains) have been recently reported from several countries. During rotavirus surveillance in Japan in 2015-2016, three DS-1-like G3P[8] strains were identified from children with severe diarrhea. In the present study, we sequenced and characterized the full genomes of these three strains. On full-genomic analysis, all three strains showed a unique genotype constellation including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that each of the 11 genes of the three strains was closely related to that of Japanese DS-1-like G1P[8] and/or Japanese equine-like G3P[4] human strains. Thus, the three study strains were suggested to be reassortants that acquired the G3-VP7 gene from equine G3 rotaviruses on the genetic background of DS-1-like G1P[8] strains. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G3P[8] strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmv.25016 | DOI Listing |
Sci Rep
December 2024
Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq platform and analysed using bioinformatics tools.
View Article and Find Full Text PDFBraz J Microbiol
November 2024
Laboratory of Virology and Cellular Culture (LABVICC), Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, Brazil.
In the post-rotavirus (RVA) vaccination era, uncommon and zoonotic strains have emerged as causative agents of acute gastroenteritis in humans, including the equine-like G3P[8] strains. First identified in 2013, this strain has quickly spread worldwide, reaching the position of the most prevalent genotype in many countries, including Brazil. Here, we report full genotype characterization and phylogenetic analysis of two equine-like G3P[8] strains detected in Goiás, a state in the Cerrado biome of the Brazilian Midwestern region, during the year of 2019.
View Article and Find Full Text PDFJ Med Virol
January 2024
Department of Clinical Laboratory, Children's Hospital of Fudan University & National Children Medical Center, Shanghai, China.
Group A rotavirus (RVA) is considered an important cause of acute gastroenteritis (AGE) in all age groups, especially in children. We investigated the epidemiology of RVA in outpatients aged ≤ 16 years at the Children's Hospital of Fudan University, Shanghai, China. In this study, 16.
View Article and Find Full Text PDFBraz J Microbiol
December 2023
Department of Molecular Epidemiology of Viral Infections, I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia.
Since 2013, there has been an increase in reports of the spread of a double intergroup reassortant strain of rotavirus type A (RVA) with the genotype G3P[8] and other genes belonging to the second genogroup I2-R2-C2-M2-A2-N2-T2-E2-H2. In our study, we provide a molecular genetic characterization of rotaviruses with genotype G3P[8]-I2 isolated in Nizhny Novgorod. In our study, we used RT-PCR, Sanger sequencing, RNA-PAGE methods.
View Article and Find Full Text PDFInfect Genet Evol
December 2023
Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!