Background: Red raspberries are a delicate and highly perishable fruit with a fragile pulp tissue. In this study we used vacuum impregnation (VI) methods to incorporate pectin and calcium chloride into whole red raspberries to improve their firmness. Specifically, we impregnated low methoxyl pectin (LMP) at 10 g of pectin kg of solution and calcium chloride (CaCl ·2H O) at 30 g calcium kg of pectin, and on the other side pectin methylesterase (PME) at 10 g of enzyme kg of solution, and (CaCl ·2H O) at 10 g of calcium kg of solution, into whole red raspberries. We tested three vacuum levels 33.9, 50.8, and 67.8 kPa, three vacuum impregnation times 2, 7, and 15 min, and two temperatures, 20 and 40 °C, during VI treatment. Maximum force (F ) and gradient (G ) were evaluated to assess raspberry firmness.

Results: A vacuum level of 50.8 kPa, processing time of 7 min, and a LMP and calcium infusion at 20 °C resulted in the firmest fruit compared to the other treatments. At these VI treatment conditions, F and G values of red raspberries obtained were 28 N, and 8.4 N mm , respectively.

Conclusion: The optimal VI conditions identified in this study can be used to improve firmness and structural integrity of red raspberries by infusion of LMP and calcium. Findings on vacuum-impregnated red raspberries may be used to develop dehydrofrozen berries for incorporation into bakery and dairy products. © 2018 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.8878DOI Listing

Publication Analysis

Top Keywords

red raspberries
28
vacuum impregnation
12
calcium chloride
8
improve firmness
8
cacl ·2h
8
three vacuum
8
lmp calcium
8
red
7
raspberries
7
calcium
6

Similar Publications

Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils.

Molecules

January 2025

Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.

In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitochondrial genome of red raspberry (Rubus idaeus L.) revealing repeat-mediated recombination and gene transfer.

BMC Plant Biol

January 2025

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.

Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.

View Article and Find Full Text PDF

Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding microgel morphology is key for enhancing their functions in various applications, but traditional methods are often limited and low in efficiency.
  • A new bottom-up approach is introduced for creating unique non-spherical microgels from N-vinylcaprolactam using a specific liquid crystalline comonomer, allowing for more diverse shapes like multilobe, dumbbell, and raspberry forms.
  • By manipulating factors like LCM addition time, temperature, and solvent ratios, researchers can fine-tune microgel shapes, which are characterized using microscopy and light scattering techniques, and they show potential in solubilizing hydrophobic compounds like Nile Red.
View Article and Find Full Text PDF

Red raspberries, valued for their nutrients and bioactive compounds, have broad uses in processing and healthy products. However, limited comprehensive research focused on the comparison of phenolic compounds of red raspberry, especially species cultivated in Northeast China, has been reported. This study aimed to conduct a thorough investigation of 24 red raspberry varieties in Northeast China for the first time, evaluating their phenolic compounds and antioxidant capacities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!