Cyanobacteria are used as anode catalysts in photo-bioelectrochemical cells to generate electricity in a sustainable, economic, and environmental friendly manner using only water and sunlight. Though cyanobacteria (CB) possess unique advantage for solar energy conversion by virtue of its robust photosynthesis, they cannot efficiently perform extracellular electron transfer (EET). The reasons being, unlike dissimilatory metal reducing bacteria (that are usually exploited in microbial fuel cells to generate electricity), (1) CB do not possess any special features on their outer membrane to carry out EET and, (2) the electrons generated in photosynthetic electron transport chain are channeled into competing respiratory pathways rather than to the anode. CB, genetically engineered to express outer membrane cytochrome S (OmcS), was found to generate ∼nine-fold higher photocurrent compared to that of wild-type cyanobacterium in our previous work. In this study, each of the three respiratory terminal oxidases in Synechococcus elongatus PCC7942 namely bd-type quinol oxidase, aa -type cytochrome oxidase, and cbb -type cytochrome oxidase was knocked-out one at a time (cyd , cox , and cco respectively) and its contribution for extracellular ferricyanide reduction and photocurrent generation was investigated. The knock-out mutant lacking functional bd-type quinol oxidase (cyd ) exhibited greater EET by reducing more ferricyanide compared to other single knock-out mutants as well as the wild type. Further, cyd omcs (the cyd mutant expressing OmcS) was found to generate more photocurrent than the corresponding single knock out controls and the wild-type. This study clearly demonstrates that the bd-quinol oxidase diverted more electrons from the photosynthetic electron transport chain towards respiratory oxygen reduction and knocking it out had certainly enhanced the cyanobacterial EET.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26542DOI Listing

Publication Analysis

Top Keywords

respiratory terminal
8
terminal oxidases
8
extracellular electron
8
electron transfer
8
cells generate
8
generate electricity
8
outer membrane
8
photosynthetic electron
8
electron transport
8
transport chain
8

Similar Publications

Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.

Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.

Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.

View Article and Find Full Text PDF

Cabozantinib Selectively Induces Proteasomal Degradation of p53 Somatic Mutant Y220C and Impedes Tumor Growth.

J Biol Chem

January 2025

Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University; Jiangsu, China. Electronic address:

Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors, and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment.

View Article and Find Full Text PDF

Background: Large, international cohort studies generate high-level evidence, but are resource intense. In end-of-life care such studies are scarce. Hence, planning for future studies in terms of data on screening, recruitment, retention and survival remains a challenge.

View Article and Find Full Text PDF

Background: Unexplained exertional dyspnoea without significant elevation of natriuretic peptides is common. One of the causes might be early heart failure with preserved ejection fraction (HFpEF).

Aims: This study aimed to characterize patients with exertional dyspnoea and normal/near-to-normal N-terminal pro-brain natriuretic peptide (NT-proBNP) levels with regard to early stages of HFpEF and non-cardiac causes.

View Article and Find Full Text PDF

Background: Extubation failure is associated with an increased morbidity, emphasizing the need to identify factors to further optimize extubation practices. The role of biomarkers in the prediction of extubation failure is currently limited. The aim of this study was to investigate the prognostic value of cardiac (N-terminal pro-B-type natriuretic peptide (NT-proBNP), High-sensitivity Troponin T (Hs-TnT)) and inflammatory biomarkers (Interleukin-6 (IL-6) and Procalcitonin (PCT)) for extubation failure in patients with COVID-19 Acute Respiratory Distress Syndrome (C-ARDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!