Curcumin is a natural compound present in Indian spice turmeric. It has diverse pharmacological action but low oral solubility and bioavailability continue to limit its use as a drug. With the aim of improving the bioavailability of Curcumin (CUR), we evaluated Curcumin-Pyrogallol (CUR-PYR) cocrystal and Curcumin-Artemisinin (CUR-ART) coamorphous solid. Both of these solid forms exhibited superior dissolution and pharmacokinetic behavior compared to pure CUR, which is practically insoluble in water. CUR-ART coamorphous solid showed two fold higher bioavailability than CUR-PYR cocrystal (at 200 mg/kg oral dose). Moreover, in simulated gastric and intestinal fluids (SGF and SIF), CUR-ART is stable up to 3 and 12 h, respectively. In addition, CUR-PYR and CUR-ART showed no adverse effects in toxicology studies (10 times higher dose at 2000 mg/kg). CUR-ART showed higher therapeutic effect and inhibited approximately 62% of tumor growth at 100 mg/kg oral dosage of CUR in xenograft models, which is equal to the positive control drug, doxorubicin (2 mg/kg) by i.v. administration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874820PMC
http://dx.doi.org/10.3390/pharmaceutics10010007DOI Listing

Publication Analysis

Top Keywords

coamorphous solid
12
cur-pyr cocrystal
8
cur-art coamorphous
8
mg/kg oral
8
cur-art
5
curcumin-artemisinin coamorphous
4
solid
4
solid xenograft
4
xenograft model
4
model preclinical
4

Similar Publications

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Drug-Phospholipid Co-Amorphous Formulations: The Role of Preparation Methods and Phospholipid Selection.

Pharmaceutics

December 2024

Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.

View Article and Find Full Text PDF

This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed coamorphous systems (CAM) using lumefantrine (LMF) and alpha-ketoglutaric acid (KGA) to improve LMF's solubility and bioavailability through three distinct methods: liquid-assisted grinding, solvent evaporation, and quench-cooling.
  • Testing via PXRD, DSC, and other techniques confirmed the successful amorphization and intermolecular interactions in these CAMs, along with simulations showing diverse molecular environments.
  • The new CAMs significantly enhanced solubility (up to 14.73x), dissolution rates (up to 2.63x), and pharmacokinetics in living organisms (up to 10.86x), while also demonstrating anti-cancer
View Article and Find Full Text PDF

Evaluation of aspartame as a co-former in the preparation of co-amorphous formulations of dipyridamole using spray drying.

Int J Pharm

December 2024

Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford, Ireland; SSPC, The Research Ireland Centre for Pharmaceuticals, South East Technological University, Waterford, Ireland. Electronic address:

Article Synopsis
  • Co-amorphous systems (CAMs) can improve the solubility of poorly water-soluble drugs, but challenges like a limited number of co-formers and lab-scale preparation techniques exist.
  • This study uses aspartame and dipyridamole to create CAMs through spray drying, showing that AspPhe has better solid-state properties and physical stability than individual amino acids.
  • Molecular interactions analyzed by Hirshfeld Surface analysis and FT-IR spectroscopy demonstrate that hydrogen bond interactions significantly enhance the stability of the DPM-AspPhe co-amorphous system, while crystallization rates are affected by temperature and humidity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!