Enzymatic oxidation of 5-hydroxymethylfurfural (HMF) and its oxidized derivatives was studied using three fungal enzymes: wild-type aryl alcohol oxidase (AAO) from three fungal species, wild-type peroxygenase from (UPO), and recombinant galactose oxidase (GAO). The effect of pH on different reaction steps was evaluated and apparent kinetic data (Michaelis-Menten constants, turnover numbers, specific constants) were calculated for different enzyme-substrate ratios and enzyme combinations. Finally, the target product, 2,5-furandicarboxylic acid (FDCA), was prepared in a multi-enzyme cascade reaction combining three fungal oxidoreductases at micro-scale. Furthermore, an oxidase-like reaction is proposed for heme-containing peroxidases, such as UPO, horseradish peroxidase, or catalase, causing the conversion of 5-formyl-2-furancarboxylic acid into FDCA in the absence of exogenous hydrogen peroxide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874619 | PMC |
http://dx.doi.org/10.3390/microorganisms6010005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!