The ultimate challenge for the development of new multiferroics with enhanced properties lies in achieving nanoscale control of the coupling between different ordering parameters. In oxide-based multiferroics, substitutional cation dopants offer the unparalleled possibility to modify both the electric and magnetic properties at a local scale. Herein it is demonstrated the formation of a dopant-controlled polar pattern in BiFeO leading to the spontaneous instauration of periodic polarization waves. In particular, nonpolar Ca-doped rich regions act as spacers between consecutive dopant-depleted regions displaying coupled ferroelectric states. This alternation of layers with different ferroelectric state creates a novel vertical polar structure exhibiting giant polarization gradients as large as 70 μC cm across 30 Å thick domains. The drastic change in the polar state of the film is visualized using high-resolution differential phase-contrast imaging able to map changes in ferroelectric polarization at atomic scale. Furthermore, a periodic distortion in the Fe-O-Fe bonding angle suggests a local variation in the magnetic ordering. The findings provide a new insight into the role of doping and reveal hitherto unexplored means to tailor the functional properties of multiferroics by doping engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b03817 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!