Low executive function (EF) during early childhood is a major risk factor for developmental delay, academic failure, and social withdrawal. Susceptible genes may affect the molecular and biological mechanisms underpinning EF. More specifically, genes associated with the regulation of prefrontal dopamine may modulate the response of prefrontal neurons during executive control. Several studies with adults and older children have shown that variants of the catechol-O-methyltransferase (COMT) gene are associated with behavioral performance and prefrontal activations in EF tasks. However, the effect of the COMT genotype on prefrontal activations during EF tasks on young children is still unknown. The present study examined whether a common functional polymorphism (Val158Met) in the COMT gene was associated with prefrontal activations and cognitive shifting in 3- to 6-year-old children. The study revealed that, compared with children with at least one Met allele (Met/Met and Met/Val), children who were Val homozygous (i) were more able to flexibly switch rules in cognitive shifting tasks and (ii) exhibited increased activations in lateral prefrontal regions during these tasks. This is the first evidence that demonstrates the relationship between a gene polymorphism and prefrontal activations in young children. It also indicates that COMT Val homozygosity may be advantageous for cognitive shifting and prefrontal functions, at least during early childhood, and children who possess this variant may have a lower risk of developing future cognitive and social development issues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175303PMC
http://dx.doi.org/10.1111/desc.12649DOI Listing

Publication Analysis

Top Keywords

prefrontal activations
20
young children
12
cognitive shifting
12
prefrontal
9
lateral prefrontal
8
activations young
8
children
8
early childhood
8
comt gene
8
gene associated
8

Similar Publications

Social comparisons are a core feature of human life. Theories posit that social comparisons play a critical role in depression and social anxiety triggering negative evaluations about the self, as well as negative emotions. We investigated the neural basis of social comparisons in participants with depression and/or social anxiety (MD-SA, n=56) and healthy controls (n=47) using functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

Background: Late-life depression (LLD) is often accompanied by cognitive impairment, which may persist despite antidepressant treatment. Repetitive transcranial magnetic stimulation (rTMS) is an efficacious treatment for depression, with potential benefits on cognitive functioning. However, research on cognitive effects is inconclusive, relatively sparse in LLD, and predominantly focused on group-level cognitive changes.

View Article and Find Full Text PDF

Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).

View Article and Find Full Text PDF

Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.

Neuron

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:

Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!