Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont.

Plant Cell Environ

Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.

Published: November 2018

Plants sense and respond to microbes utilizing a multilayered signalling cascade. In seed plants, the phytohormones jasmonic and salicylic acid (JA and SA) are key denominators of how plants respond to certain microbes. Their interplay is especially well-known for tipping the scales in plants' strategies of dealing with phytopathogens. In non-angiosperm lineages, the interplay is less well understood, but current data indicate that it is intertwined to a lesser extent and the canonical JA/SA antagonism appears to be absent. Here, we used the water fern Azolla filiculoides to gain insights into the fern's JA/SA signalling and the molecular communication with its unique nitrogen fixing cyanobiont Nostoc azollae, which the fern inherits both during sexual and vegetative reproduction. By mining large-scale sequencing data, we demonstrate that Azolla has most of the genetic repertoire to produce and sense JA and SA. Using qRT-PCR on the identified biosynthesis and signalling marker genes, we show that Azolla is responsive to exogenously applied SA. Furthermore, exogenous SA application influenced the abundance and gene expression of Azolla's cyanobiont. Our data provide a framework for JA/SA signalling in ferns and suggest that SA might be involved in Azolla's communication with its vertically inherited cyanobiont.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13131DOI Listing

Publication Analysis

Top Keywords

jasmonic salicylic
8
salicylic acid
8
fern azolla
8
azolla filiculoides
8
respond microbes
8
ja/sa signalling
8
acid response
4
response fern
4
azolla
4
cyanobiont
4

Similar Publications

Strawberries, known for their antioxidant properties, exhibit changes in physiology and metabolite profiles based on cultivation techniques. In Indonesia, strawberries are typically grown in highland regions, but climate change has necessitated adjustments in cultivation practices to enhance production and quality. This study investigates the adaptation of strawberry plants in lowland environments using light-emitting diodes (LEDs) and the exogenous application of methyl jasmonate (MeJA) and methyl salicylic acid (MeSA).

View Article and Find Full Text PDF

Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought.

Plants (Basel)

January 2025

Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

Characteristics and Functions of , a Terpenoid Synthesis-Related Gene in Lamb.

Int J Mol Sci

January 2025

State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.

Terpenoids, abundant and structurally diverse secondary metabolites in plants, especially in conifer species, play crucial roles in the plant defense mechanism and plant growth and development. In , terpenoids' biosynthesis relies on both the mevalonate (MVA) pathway and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway, with 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) catalyzing the sixth step of the MEP pathway. In this study, we cloned and conducted bioinformatics analysis of the gene from .

View Article and Find Full Text PDF

is the most common and destructive brown rot agent on peaches. Knowledge of gene expression mediating host-pathogen interaction is essential to manage fungal plant diseases. putative virulence factors have been predicted by genome investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!