Rationale: As the third leading cause of death in the United States, the impact of chronic obstructive pulmonary disease (COPD) makes identification of its molecular mechanisms of great importance. Genome-wide association studies (GWASs) have identified multiple genomic regions associated with COPD. However, genetic variation only explains a small fraction of the susceptibility to COPD, and sub-genome-wide significant loci may play a role in pathogenesis.

Objectives: Regulatory annotation with epigenetic evidence may give priority for further investigation, particularly for GWAS associations in noncoding regions. We performed integrative genomics analyses using DNA methylation profiling and genome-wide SNP genotyping from lung tissue samples from 90 subjects with COPD and 36 control subjects.

Methods: We performed methylation quantitative trait loci (mQTL) analyses, testing for SNPs associated with percent DNA methylation and assessed the colocalization of these results with previous COPD GWAS findings using Bayesian methods in the R package coloc to highlight potential regulatory features of the loci.

Measurements And Main Results: We identified 942,068 unique SNPs and 33,996 unique CpG sites among the significant (5% false discovery rate) cis-mQTL results. The genome-wide significant and subthreshold (P < 10) GWAS SNPs were enriched in the significant mQTL SNPs (hypergeometric test P < 0.00001). We observed enrichment for sites located in CpG shores and shelves, but not CpG islands. Using Bayesian colocalization, we identified loci in regions near KCNK3, EEFSEC, PIK3CD, DCDC2C, TCERG1L, FRMD4B, and IL27.

Conclusions: Colocalization of mQTL and GWAS loci provides regulatory characterization of significant and subthreshold GWAS findings, supporting a role for genetic control of methylation in COPD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955059PMC
http://dx.doi.org/10.1164/rccm.201707-1434OCDOI Listing

Publication Analysis

Top Keywords

dna methylation
12
methylation quantitative
8
quantitative trait
8
trait loci
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
genome-wide association
8
copd
5
human lung
4

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

Sci Rep

January 2025

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.

View Article and Find Full Text PDF

We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions.

View Article and Find Full Text PDF

Epigenetics in autosomal dominant polycystic kidney disease.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!