RAS mutations are found in 30% of all human cancers, with KRAS the most frequently mutated among the three RAS isoforms (KRAS, NRAS, and HRAS). However, directly targeting oncogenic KRAS with small molecules in the nucleotide-binding site has been difficult because of the high affinity of KRAS for GDP and GTP. We designed an engineered allele of KRAS and a covalent inhibitor that competes for GTP and GDP. This ligand-receptor combination demonstrates that the high affinity of GTP and GDP for RAS proteins can be overcome with a covalent inhibitor and a suitably engineered binding site. The covalent inhibitor irreversibly modifies the protein at the engineered nucleotide-binding site and is able to compete with GDP and GTP. This provides a new tool for studying KRAS function and suggests strategies for targeting the nucleotide-binding site of oncogenic RAS proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960803PMC
http://dx.doi.org/10.1021/acs.biochem.7b01113DOI Listing

Publication Analysis

Top Keywords

nucleotide-binding site
12
covalent inhibitor
12
small molecules
8
oncogenic kras
8
high affinity
8
gdp gtp
8
gtp gdp
8
ras proteins
8
kras
7
design small
4

Similar Publications

ADP-inhibited structure of non-catalytic site-depleted FF-ATPase from thermophilic Bacillus sp. PS-3.

Biochim Biophys Acta Bioenerg

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:

The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.

View Article and Find Full Text PDF

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Using cryogenic electron microscopy (cryo-EM), we determine the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. In the autoinhibited state, the cytosolic regulatory (R) domain plugs into the transmembrane substrate-binding site and extends into the cytosol to form a composite ATP-binding site at the surface of nucleotide-binding domain 2.

View Article and Find Full Text PDF
Article Synopsis
  • RbgA is a GTPase that plays a crucial role in the maturation of the 50S ribosomal subunit, favoring its GTP-bound state over the GDP-bound state due to conformational differences.
  • All-atom molecular dynamics simulations revealed significant conformational changes in RbgA depending on the bound nucleotide, particularly under GTP-Mg and GMPPNP-Mg conditions, which may impact its function.
  • The study identifies key regions that influence RbgA's ribosome association and suggests that understanding these mechanisms can help develop new chemical agents to regulate ribosome biogenesis.
View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!