AI Article Synopsis

  • The study focuses on improving the efficiency and stability of CHNHPbI perovskite films for solar cells by controlling nucleation through the addition of 4-tert-butylpyridine (tBP).
  • tBP helps to suppress nucleation and forms an intermediate phase, resulting in high-quality perovskite layers as confirmed by in situ optical microscopy and X-ray diffraction patterns.
  • The treated perovskite achieved a power conversion efficiency (PCE) of 17.41% and maintained over 89% of its initial PCE after 30 days at room temperature, indicating significant improvements in both efficiency and stability.

Article Abstract

The synthesis and growth of CHNHPbI films with controlled nucleation is a key issue for the high efficiency and stability of solar cells. Here, 4-tert-butylpyridine (tBP) was introduced into a CHNHPbI antisolvent to obtain high quality perovskite layers. In situ optical microscopy and X-ray diffraction patterns were used to prove that tBP significantly suppressed perovskite nucleation by forming an intermediate phase. In addition, a gradient perovskite structure was obtained by this method, which greatly improved the efficiency and stability of perovskites. An effective power conversion efficiency (PCE) of 17.41% was achieved via the tBP treatment, and the high-efficiency device could maintain over 89% of the initial PCE after 30 days at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b16912DOI Listing

Publication Analysis

Top Keywords

solar cells
8
efficiency stability
8
incorporating 4-tert-butylpyridine
4
4-tert-butylpyridine antisolvent
4
antisolvent facile
4
facile approach
4
approach highly
4
highly efficient
4
efficient stable
4
perovskite
4

Similar Publications

Wafer-scale monolayer MoS film integration for stable, efficient perovskite solar cells.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

Organic Crosslinked Tin Oxide Mitigating Buried Interface Defects for Efficient and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Materials Science and Engineering, NO.1088,Xueyuan Avenue,Nanshan District, 518055, Shenzhen, CHINA.

Tin dioxide (SnO2) stands as a promising material for the electron transport layer (ETL) in perovskite solar cells (PSCs) attributed to its superlative optoelectronic properties. The attainment of superior power conversion efficiency hinges critically on the preparation of high-quality SnO2 thin films. However, conventional nanoparticle SnO2 colloids often suffer from inherent issues such as numerous oxygen vacancy defects and film non-uniformity.

View Article and Find Full Text PDF

Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD).

View Article and Find Full Text PDF

The stability of perovskite quantum dot solar cells is one of the key challenges of this technology. This study reveals the unique degradation behavior of cesium lead triiodide (CsPbI) quantum dot solar cells. For the first time, it is shown that the oxygen-induced degradation and performance loss of CsPbI quantum dot photovoltaic devices can be reversed by exposing the degraded samples to humidity, allowing the performance to recover and even surpass the initial performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!