A DFT study of the interaction between [Cd(HO)] and monodentate O-, N-, and S-donor ligands: bond interaction analysis.

J Mol Model

Programa de Pós-gradução em Química, Departamento de Química Inorgânica, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, RJ, 24020-141, Brazil.

Published: January 2018

A series of B3LYP/6-311+G(d,p) calculations of the affinity of monodentate ligands for [Cd(HO)] are performed. Three types of ligands containing O (phosphine oxide, lactam, amide, carboxylic acid, ester, ketone, aldehyde, ether, halohydrin, enol, furan), N (thiocyanate, amine, ammonia, azide), and S (thioester, thioketone, thiol, thiophene, disulfide) interacting atoms are investigated. The results show that phosphine oxide has the largest affinity for the cadmium cation due to the polarization of the P=O bond. As the P atom has a large atomic radius, the O atom can polarize the electronic cloud enhancing its amount of electronic charge and favoring the interaction with Cd. The affinity order found is phosphine oxide > thioester > lactam > amide > carboxylic acid > ester > thioketone > ketone > thiocyanate > amine > ammonia > aldehyde > ether > thiol > thiophene > enol > halohydrin > disulfide > azide > furan ligands. These results were also corroborated by the functional M06-2X. The electronic effects (resonance and induction) of neighboring groups of the interacting atom modulate the strength of metal-ligand binding. For almost all the O-donor ligands the electrostatic component has the same magnitude as the covalent term, while for the N- and S-donor ligands the covalent term is predominant. The polarization term accounts for twice the exchange term as part of the covalent component. The dispersion term varies less than 2 kcal mol for the complexes analyzed. The Pauli repulsion term is correlated with the metal ligand distance, increasing in the compounds with decreased metal-ligand bond length. The charge between the interacting atoms is also strongly correlated with both the interacting strength and the electrostatic interaction component. The natural bond orbital analysis highlights correlations of the bond order, and S and P contributions of the interacting metal-ligand orbital with the coordination strength. Graphical abstract The affinity of 20 monodentate ligands with different functional groups for the [Cd(HO)] cation is calculated based on the interaction enthalpy and Gibbs free energy for the substitution of one water molecule from the fully hydrated cation. The affinity is correlated with geometric, electronic, and energetic parameters of the ligands and the complexes as well as with energy decomposition and natural bond order analyses results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-017-3571-xDOI Listing

Publication Analysis

Top Keywords

phosphine oxide
12
ligands
8
s-donor ligands
8
affinity monodentate
8
monodentate ligands
8
lactam amide
8
amide carboxylic
8
carboxylic acid
8
acid ester
8
aldehyde ether
8

Similar Publications

Targeting Ru(III) and Ru(I) η2-alkyne species, 2,2'-(iPr2E)2-substituted diphenylacetylenes (1-E, E = P, As) were em-ployed for the pre-paration of [ECCE]-coordinated ruthenium com-plexes. The re-actions between 1-E and cis-(MeCN)2(COD)RuCl2 led to the required Ru(II) starting materials cis-[ECCE]RuCl2(MeCN) (3-E). Upon oxi-dation of 3-E with PhICl2, the Ru(III) target com-plexes [ECCE]RuCl3 (7-E) were detectable for E = P and E = As, but only the arsa-deriva-tive 7-As was obtained in a pure form, namely via oxi-da-tion of cis-[AsCCAs]RuCl2(THT) (THT = tetrahydrothiophene).

View Article and Find Full Text PDF

A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

Synthesis and Characterization of Polychlorinated Trityl Radical Substituted Phosphines.

Org Lett

January 2025

College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.

We synthesized a series of polychlorinated trityl radical substituted phenylphosphines. Through UV-vis photoluminescence (PL) spectroscopy and cyclic voltammetry, we explored the influence of the chemical modifications (oxidation/reduction, coordination, and methylation) of the phosphorus center(s) on tuning the optical and redox properties of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical framework. Those compounds hold promise for applications in coordination chemistry and luminescent materials, particularly in systems where both radical and phosphine-based functionalities can be leveraged for innovative properties.

View Article and Find Full Text PDF

Sulfur functionalized diamondoid phosphines enable building nanocomposites interfacing sp-carbon and gold nanolayers.

Nanoscale

January 2025

Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon, France.

Interfacing metal frameworks with carbon-based materials is attractive for the bottom-up construction of nanocomposite functional materials. The stepwise layering of difunctionalized diamantanes and gold metal from physical and chemical vapor deposition for the preparation of nanocomposites inverts the conventional preparation of metal-organic frameworks (MOFs) and self-assemblies, where the metal is introduced first, and this method delivers metal surfaces with modified properties originating from the sp-carbon core. However, appropriate diamondoid candidates for such an approach are rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!