The present work aimed to investigate the genetic diversity of Bartonella in mammals and ectoparasites in Pantanal wetland, Brazil. For this purpose, 31 Nasua nasua, 78 Cerdocyon thous, 7 Leopardus pardalis, 110 wild rodents, 30 marsupials, and 42 dogs were sampled. DNA samples were submitted to a quantitative real-time PCR assay (qPCR). Positive samples in qPCR were submitted to conventional PCR assays targeting other five protein-coding genes. Thirty-five wild rodents and three Polygenis (P.) bohlsi bohlsi flea pools showed positive results in qPCR for Bartonella spp. Thirty-seven out of 38 positive samples in qPCR were also positive in cPCR assays based on ftsZ gene, nine in nuoG-cPCR, and six in gltA-cPCR. Concatenated phylogenetic analyses showed that two main genotypes circulate in rodents and ectoparasites in the studied region. While one of them was closely related to Bartonella spp. previously detected in Cricetidae rodents from North America and Brazil, the other one was related to Bartonella alsatica, Bartonella pachyuromydis, Bartonella birtlesii, Bartonella acomydis, Bartonella silvatica, and Bartonella callosciuri. These results showed that at least two Bartonella genotypes circulate among wild rodents. Additionally, the present study suggests that Polygenis (P.) bohlsi bohlsi fleas could act as possible Bartonella vectors among rodents in Pantanal wetland, Brazil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-017-1138-0DOI Listing

Publication Analysis

Top Keywords

bartonella
12
bartonella spp
12
wild rodents
12
genetic diversity
8
diversity bartonella
8
mammals ectoparasites
8
pantanal wetland
8
wetland brazil
8
qpcr positive
8
positive samples
8

Similar Publications

Background: Acute febrile illness is a common reason for seeking healthcare in low- and middle-income countries. We describe the diagnostic utility of a TaqMan Array Card (TAC) real-time polymerase chain reaction (PCR) panel for pathogen detection in paediatric and adult inpatients admitted with febrile illness.

Methods: In this prospective cohort study, we screened medical admissions for a tympanic temperature ≥38.

View Article and Find Full Text PDF

Background: Fleas are insect vectors that transmit several Gram-negative bacterial pathogens acquired by ingesting infected vertebrate blood. To combat foodborne illness, insect midgut epithelial cells are armed with efficient microbial recognition and control systems, such as the immune deficiency (IMD) pathway that regulates the expression of antimicrobial peptides (AMPs). However, despite their medical and veterinary importance, relatively little is known about the IMD signaling pathway and production of AMPs in the digestive tract of cat fleas (Ctenocephalides felis).

View Article and Find Full Text PDF

Raccoons (Procyon lotor) originated in North America and have been introduced to Europe. Due to their close contact with human settlements, they are important reservoirs for zoonotic pathogens, such as Baylisascaris procyonis. The relevance and prevalence of vector-borne pathogens have not yet been fully elucidated.

View Article and Find Full Text PDF

Epidemiological characteristics and genetic diversity of Bartonella species from rodents in Guangxi Zhuang autonomous region, Southwestern China.

Acta Trop

December 2024

Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China. Electronic address:

Bartonella spp. are gram-negative bacteria recognized as zoonotic pathogens of wide spectrum mammals. Rodents are recognized as a natural reservoir of pathogens, and many Bartonella species transmitted by various blood-sucking arthropods have been detected in various rodents populations.

View Article and Find Full Text PDF

Yield of clinical metagenomics: insights from real-world practice for tissue infections.

EBioMedicine

December 2024

Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, 310003, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, PR China. Electronic address:

Background: While metagenomic next-generation sequencing (mNGS) has been acknowledged as a valuable diagnostic tool for infections, its clinical validity and impact on patient management when using fresh tissue samples remains uncertain.

Methods: We conducted a retrospective cross-sectional study involving patients who underwent tissue mNGS at a tertiary hospital in China from February 2021 to February 2024, aiming to assess its ability to detect plausible pathogens and its clinical validity and impact.

Findings: A total of 520 mNGS results from 508 patients were analysed, detecting plausible pathogens in 302 (58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!