Intraoperative radiotherapy (IORT) for early stage breast cancer is a technique for partial breast irradiation. There are several technologies in clinical use to perform breast IORT. Regardless of technique, IORT generally refers to the delivery of a single dose of radiation to the periphery of the tumor bed in the immediate intraoperative time frame, although some protocols have performed IORT as a second procedure. There are two large prospective randomized trials establishing the safety and efficacy of breast IORT in early stage breast cancer patients with sufficient follow-up time on thousands of women. The advantages of IORT for partial breast irradiation include: direct visualization of the target tissue ensuring treatment of the high-risk tissue and eliminating the risk of marginal miss; the use of a single dose coordinated with the necessary surgical excision thereby reducing omission of radiation and the selection of mastectomy for women without access to a radiotherapy facility or unable to undergo several weeks of daily radiation; favorable toxicity profiles; patient convenience and cost savings; radiobiological and tumor microenvironment conditions which lead to enhanced tumor control. The main disadvantage of IORT is the lack of final pathologic information on the tumor size, histology, margins, and nodal status. When unexpected findings on final pathology such as positive margins or positive sentinel nodes predict a higher risk of local or regional recurrence, additional whole breast radiation may be indicated, thereby reducing some of the convenience and low-toxicity advantages of sole IORT. However, IORT as a tumor bed boost has also been studied and appears to be safe with acceptable toxicity. IORT has potential efficacy advantages related to overall survival related to reduced cardiopulmonary radiation doses. It may also be very useful in specific situations, such as prior to oncoplastic reconstruction to improve accuracy of adjuvant radiation delivery, or when used as a boost in higher risk patients to improve tumor control. Ongoing international clinical trials are studying these uses and follow-up data are accumulating on completed studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743678 | PMC |
http://dx.doi.org/10.3389/fonc.2017.00317 | DOI Listing |
J Transl Med
January 2025
Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).
Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.
Chin Med
January 2025
Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Paclitaxel-induced peripheral neuropathy (PIPN) is prevalent among patients receiving paclitaxel chemotherapy, which results in sensory abnormality as well as neuropathic pain. Conventional medications lack effectiveness on PIPN. Clinical trials identified beneficial effects of acupuncture on PIPN among patients receiving chemotherapy.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Te Aka Whai Ora (Māori Health Authority), Auckland, New Zealand.
Background: Breast cancer screening in Aotearoa New Zealand (NZ) still has persistent inequitable coverage by ethnicity, especially for Indigenous Māori women. This project aimed to undertake systematic data linkage to identify and invite eligible Māori women to participate in breast screening.
Methods: This is a cross-sectional observational study conducted in Northern New Zealand between 1/01/2020 and 30/06/2021.
Cancer Cell Int
January 2025
Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, China.
The tertiary lymphoid structure (TLS) is recognized as a potential prognosis factor for breast cancer and is strongly associated with response to immunotherapy. Inducing TLS neogenesis can enhance the immunogenicity of tumors and improve the efficacy of immunotherapy. However, our understanding of TLS associated region at the single-cell level remains limited.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!