Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as 'cell adhesion' and 'cell migration'. Furthermore, they are most significantly correlated with 'tissue invasion and metastasis', a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752539 | PMC |
http://dx.doi.org/10.18632/oncotarget.22724 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!