Background: Patients with hereditary tumor syndromes undergo periodical magnetic resonance imaging (MRI) screening with Gadolinium contrast. Gadolinium accumulation has recently been described in the central nervous system after repeated administrations. The prevalence and rate of accumulation in different subgroups of patients are unknown. Neither are the mechanism nor clinical impact. This may cause uncertainty about the screening. To explore the prevalence and rate of Gadolinium accumulation in different subgroups, we retrospectively analyzed MRIs of patients with von Hippel-Lindau disease (VHL) and Tuberous Sclerosis Complex (TSC).

Methods: We determined the prevalence and rate of accumulation in the dentate nucleus and globus pallidus on unenhanced T1-weighted MRI from VHL and TSC patients. We compared the signal intensities of these regions to the signal intensity of the pons. We evaluated the impact of number of MRIs, kidney function and liver function on Gadolinium accumulation.

Results: Twenty eight VHL patients and 24 TSC patients were included. The prevalence of accumulation in the dentate nucleus and globus pallidus increased linearly according to number of Gadolinium enhanced MRIs and was higher in the VHL group (100%). A significant linear correlation between number of MRIs and increased signal intensity was observed in the VHL group.

Conclusions: Gadolinium accumulation occurs in almost all patients undergoing contrast MRI screening after >5 MRIs. We advocate a screening protocol for patients with hereditary tumor syndromes that minimizes the Gadolinium dose. This can be accomplished by using a single administration to simultaneously screen for brain, spine and/or abdominal lesions, using an MRI protocol focused on either VHL- or TSC-specific lesions. Higher prevalence and rate of accumulation in VHL patients may be explained by the typical vascular leakage accompanying central nervous system hemangioblastomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756358PMC
http://dx.doi.org/10.1186/s13053-017-0084-7DOI Listing

Publication Analysis

Top Keywords

gadolinium accumulation
16
prevalence rate
16
central nervous
12
nervous system
12
mri screening
12
hereditary tumor
12
tumor syndromes
12
rate accumulation
12
patients
10
gadolinium
8

Similar Publications

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Purpose: We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.

Materials And Methods: Twenty-one rabbits were included in the study.

View Article and Find Full Text PDF

The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs.

View Article and Find Full Text PDF

Purpose: With the growing interest in exploring radiolanthanides for nuclear medicine applications, the question arises as to whether they are generally interchangeable without affecting a biomolecule's pharmacokinetic properties. The goal of this study was to investigate similarities and differences of four (radio)lanthanides simultaneously applied as complexes of biomolecules or in ionic form.

Methods: Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the simultaneous detection of four lanthanides (Ln = lutetium, terbium, gadolinium and europium) in biological samples.

View Article and Find Full Text PDF

Reactive Oxygen and Nitrogen Species - "Nanosweeper" for Rheumatoid Arthritis Theranostics by Macrophage Reprogramming.

ACS Appl Mater Interfaces

December 2024

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

Excessive reactive oxygen and nitrogen species (RONS) accumulation in joints are significant variables that affect the course of rheumatoid arthritis (RA). Scavenging of RONS to remodel macrophage homeostasis is a potentially powerful treatment for RA. Here, a visualized "nanosweeper" by functionalizing ultrasmall Gd/FeO nanoparticles with thiol-polyethylene glycol-phosphoric acid and 2-(3-(2-aminophenyl)ureido) ethyl methacrylate hydrochloride (APUEMA), namely GIA NPs, can simultaneously scavenge both nitric oxide (NO) and reactive oxygen species (ROS), as well as enhance magnetic resonance imaging (MRI) for the diagnosis and therapy of RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!