Characterization and Function of MicroRNAs in Plants.

Front Plant Sci

School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China.

Published: December 2017

MicroRNAs, a group of non-coding RNA molecules, play essential roles in a wide range of cellular processes in different molecules, cells, and organisms. In plants, microRNAs are a class of 20- to 24-nucleotides endogenous small RNAs that repress gene expression. The microRNA guide strand (miRNA) and its complementary strand (miRNA) both originate from the miRNA/miRNA duplex. Generally, the guide strands act as post-transcriptional regulators that suppress gene expression by cleaving their target mRNA transcripts, whereas the complementary strands were thought to be degraded as 'passenger strands.' However, the complementary strand has been confirmed to possess significant biological functionality in recent reports. In this review, we summarized the binding characteristics of the miRNA strands with ARGONAUTE proteins, their tissue-specific accumulations and their biological functions, illustrating the essential roles of miRNAs in biological processes and therefore providing directions for further exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744440PMC
http://dx.doi.org/10.3389/fpls.2017.02200DOI Listing

Publication Analysis

Top Keywords

plants micrornas
8
essential roles
8
gene expression
8
strand mirna
8
complementary strand
8
characterization function
4
function micrornas
4
micrornas plants
4
micrornas group
4
group non-coding
4

Similar Publications

Mesenchymal Stem Cell-Sourced Exosomes as Potentially Novel Remedies for Severe Dry Eye Disease.

J Ophthalmol

January 2025

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac 34000, Serbia.

Severe dry eye disease (DED) is an inflammatory condition characterized by a lack of sufficient moisture or lubrication on the surface of the eye, significantly impacting the quality of life and visual function. Since detrimental immune response is crucially responsible for the development and aggravation of DED, therapeutic agents which modulate phenotype and function of eye-infiltrated inflammatory immune cells could be used for the treatment of severe DED. Due to their potent immunomodulatory properties, mesenchymal stem cells (MSCs) represent potentially new remedies for the treatment of inflammatory eye diseases.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a significant global health challenge, underscoring the need for innovative therapeutic strategies. Oncogenic miRNAs (oncomiRs) play a significant biological role in the initiation and progression of colorectal cancer. Inspired by the cooperative mechanisms of plant nanovirus, which employ multiple circular single-stranded DNA (CssDNA) genomes, it is hypothesized that the development and delivery of CssDNA to target oncomiRs would achieve therapeutic benefits in CRC.

View Article and Find Full Text PDF

Elucidating the molecular basis of salt tolerance in potatoes through miRNA expression and phenotypic analysis.

Sci Rep

January 2025

Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China.

Potatoes are a critical staple crop worldwide, yet their yield is significantly constrained by salt stress. Understanding and enhancing salt tolerance in potatoes is crucial for ensuring food security. This study evaluated the salt tolerance of 17 diverse potato varieties using principal component analysis, membership function analysis, cluster analysis, and stepwise regression analysis.

View Article and Find Full Text PDF

Phytoplasma, a potentially hazardous pathogen associated with witches' broom, is an economically harmful disease-producing bacteria that damages chilli cultivation. Phytoplasma-infected plants display various symptoms that indicate significant disruptions in normal plant physiology and behaviour. Diseases caused by phytoplasma are widespread and have a major economic impact on crop quality and yield.

View Article and Find Full Text PDF

Genome-wide analysis of the SPL family in Zanthoxylum armatum and ZaSPL21 promotes flowering and improves salt tolerance in transgenic Nicotiana benthamiana.

Plant Mol Biol

January 2025

Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.

Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!