- A Potential Key Organism in Future Biotechnology.

Front Microbiol

Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria.

Published: December 2017

Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of species in biorefinery applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733018PMC
http://dx.doi.org/10.3389/fmicb.2017.02474DOI Listing

Publication Analysis

Top Keywords

potential key
4
key organism
4
organism future
4
future biotechnology
4
biotechnology extremophilic
4
extremophilic organisms
4
organisms represent
4
represent valuable
4
valuable resource
4
resource development
4

Similar Publications

Background: Randomised controlled trials (RCTs) evaluating new systemic treatments for atopic dermatitis (AD) have increased dramatically over the last decade. These trials often incorporate topical therapies either as permitted concomitant or rescue treatments. Differential use of these topicals post-randomisation introduces potential bias as they may nullify or exaggerate treatment responses.

View Article and Find Full Text PDF

The identification of neoantigens is crucial for advancing vaccines, diagnostics, and immunotherapies. Despite this importance, a fundamental question remains: how to model the presentation of neoantigens by major histocompatibility complex class I molecules and the recognition of the peptide-MHC-I (pMHC-I) complex by T cell receptors (TCRs). Accurate prediction of pMHC-I binding and TCR recognition remains a significant computational challenge in immunology due to intricate binding motifs and the long-tail distribution of known binding pairs in public databases.

View Article and Find Full Text PDF

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

A model of care redesign within rheumatology: A mixed methods approach integrating nurse practitioners and physician assistants.

J Am Assoc Nurse Pract

January 2025

Division of Cardiology, Department of Medicine, Duke Health Integrated Practice, Duke University Health System, Durham, North Carolina.

Background: Increasing patient demand and clinician burnout in rheumatology practices have highlighted the need for more efficient models of care (MOC). Interprofessional collaboration is essential for improving patient outcomes and clinician satisfaction.

Local Problem: Our current MOC lacks standardization and formal integration of Nurse Practitioners (NPs) and Physician Assistants (PAs), resulting in reduced clinician satisfaction and limited patient access.

View Article and Find Full Text PDF

The diagnostic performance and optimal strategy of cone beam CT-assisted bronchoscopy for peripheral pulmonary lesions: A systematic review and meta-analysis.

Pulmonology

December 2025

Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Cone-beam computed tomography (CBCT) assisted bronchoscopy shows prospective advantages in diagnosing peripheral pulmonary lesions (PPLs), but its diagnostic value and potential influencing factors remain unclear. What is the clinical value and optimal strategy of CBCT-assisted bronchoscopy in diagnosing PPLs? The references were searched from PubMed, EmBase, and Web of Science. Studies reporting diagnostic yield and potential influencing factors of CBCT-assisted bronchoscopy were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!