Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oral keratinocytes provide the first line of host defense against oral candidiasis. We speculated that interactions of fungal cell wall components with oral keratinocytes regulate the stress response against infection and examined the expression of genes induced by heat-killed in oral immortalized keratinocytes using a cDNA microarray technique. Of 24,000 genes revealed by that analysis, we focused on HO-1, a stress-inducible gene, as its expression was increased by both heat-killed and live In histological findings, HO-1 expression in the superficial layers of the oral epithelium following infection was elevated compared to that in healthy epithelium. We then investigated fungal cell wall components involved in induction of HO-1 expression and found that β-glucan-containing particles (β-GPs) increased its expression. Furthermore, β-glucan was observed on the surface of both heat-killed and cells that had invaded the oral epithelium. Fungal β-GPs also promoted induction of intracellular reactive oxygen species (ROS), NADPH oxidase activation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation, while those specific inhibitors inhibited the HO-1 expression induced by fungal β-GPs. Moreover, fungal β-GPs induced Nrf2 translocation into nuclei via p38 MAPK signaling, while the HO-1 expression induced by fungal β-GPs was inhibited by Nrf2-specific small interfering RNA (siRNA). Finally, knockdown of cells by HO-1- and Nrf2-specific siRNAs resulted in increased β-GP-mediated ROS production compared to that in the control cells. Our results show that the HO-1 induced by fungal β-GPs via ROS/p38 MAPK/Nrf2 from oral keratinocytes may have important roles in host defense against the stress caused by infection in the oral epithelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865035 | PMC |
http://dx.doi.org/10.1128/IAI.00575-17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!