Statement Of Problem: The optimal irrigating solution with antimicrobial and dentin cleansing properties for post space preparation for fiber posts is unclear. Peracetic acid is one option but is available in various chemical formulations that require evaluation.

Purpose: The purpose of this in vitro study was to evaluate dentin surface cleanliness based on the presence of a smear layer and the number of open dentin tubules. It also investigates the chemical composition of residues after canal irrigation with a 1% peracetic acid solution (PA) at low or high concentration of hydrogen peroxide during the preparation of intracanal fiber posts.

Material And Methods: After filling the root canals of 40 mandibular incisors, a rotary instrument was used for intracanal preparation to place fiber posts. The teeth were divided into 4 groups (n=10) according to the post space irrigation protocol as follows: CG (control): distilled water; NA (NaOCl): 2.5% sodium hypochlorite; LH: PA with low concentration of hydrogen peroxide; and HH: PA with high concentrations of hydrogen peroxide. After irrigation, the teeth were sectioned, and the intracanal dentin surface was subjected to analysis using energy dispersive spectroscopy to evaluate chemical composition and to scanning electron microscopy (×500) to evaluate the presence of the smear layer. The number of open dentin tubules was measured by scanning electron microscopy analysis (×2000) using photo-editing software. ANOVA and the Tukey test (α=.05) were used to evaluate the data, except for the presence of a smear layer, for which the Kruskal-Wallis and Dunn tests were used (α=.05).

Results: The highest concentrations of oxygen in the dentin residues were detected in LH and HH (P<.05); CG and NA showed similar oxygen concentrations (P>.05). NA had a higher concentration of chlorine (P<.05), whereas LH had a lower amount of smear layer and a larger number of open dentin tubules than the other groups (P<.05). These were equivalent to each other (P>.05), except for HH, which also had a larger number of open dentin tubules than CG and NA (P<.05).

Conclusions: PA 1% with a low concentration of hydrogen peroxide yielded a lower amount of smear layer and a larger number of open dentin tubules in the dentin of the post space when compared with PA 1% with a high concentration of hydrogen peroxide, despite maintaining a similar oxygen concentration in these dentin residues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2017.08.002DOI Listing

Publication Analysis

Top Keywords

peracetic acid
12
post space
12
presence smear
12
smear layer
12
hydrogen peroxide
12
fiber posts
8
dentin surface
8
layer number
8
number open
8
open dentin
8

Similar Publications

A sterilization method for human decellularized vaginal matrices.

Sci Rep

December 2024

Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.

View Article and Find Full Text PDF

Removal of sulfamethoxazole by Fe(III)-activated peracetic acid combined with ascorbic acid.

Environ Technol

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.

Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.

View Article and Find Full Text PDF

Decontamination Validation of the BSL-4 Chemical Disinfectant Deluge Shower System.

Appl Biosaf

December 2024

National Microbiology, Public Health Agency of Canada, Winnipeg, Canada.

Introduction: Positive pressure breathing-air-fed protective suits are used in biosafety level 4 (BSL-4) containment laboratories as personal protective equipment to protect workers from high-consequence pathogens. However, even with the use of primary containment devices, the exterior surfaces of these suits could potentially become contaminated with those pathogens and result in their inadvertent removal from containment. To address the risk of such pathogens escaping from containment via contaminated protective suits, these suits are decontaminated in a disinfectant chemical shower situated in an anteroom prior to exiting the BSL-4 laboratory.

View Article and Find Full Text PDF

Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.

View Article and Find Full Text PDF

Optimization of the preparation of a spiny spore high-concentrated Aspergillus brasiliensis suspension.

Lett Appl Microbiol

December 2024

Cantel Medical Italy, a STERIS Company, Via Laurentina, 169, 00071 Pomezia, Italy.

This work aimed to improve some steps of the existing guidelines of the European Standards to obtain an Aspergillus brasiliensis ATCC 16404 spore suspension with >75% spiny spores without mycelia and a concentration of at least 1.5×108 CFU ml-1. Several manufacturers' combinations "strain/medium" were assessed in terms of yield of spiny spores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!