This chapter gives insight into task-specific methodologies for the evaluation of matrix ultrastructure by light and electron microscopy. It separately considers the isolation and preparation of molecular isolates for negative staining, immunolabeling, rotary shadowing, and single particle analysis. Also considered is the preparation of whole tissues and cultured cells by chemical fixation and cryofixation methodologies. Immunoelectron microscopy for immunoidentification of matrix components may be accomplished en bloc or via section-surface protocols; the advantages and pitfalls in both methodologies are described. Correlative light and electron microscopy, particularly utilizing GFP constructs, demands special consideration in fixation and embedding protocols. TEM imaging methods, including the use of montage software and the acquisition of thick-section tilt series are discussed. The protocols presented in this chapter, with the exception of single particle analysis, are those which are continuously used in our laboratory and represent the latest modifications in our protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mcb.2017.08.002 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFJ Arthropod Borne Dis
June 2024
Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background: The German cockroach () is a pest with a global distribution that has adapted to live in human environments. threatens human health by producing asthma-inducing allergens, carrying pathogenic/antibiotic-resistant microbes, and contributing to unhealthy indoor environments. Effective application of insecticides can play an important role in cockroach control programs.
View Article and Find Full Text PDFRSC Adv
January 2025
Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.
The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.
View Article and Find Full Text PDFAppl Spectrosc
January 2025
Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
Time-resolved, rapid-scan Fourier transform infrared (FT-IR) difference spectra have been recorded upon illumination on photosynthetic reaction centers (RCs) from under fixed hydration conditions (relative humidity = 76%). Two different illumination schemes were adopted. Whereas the use of a laser flash (duration: 7 ns) made it possible to follow the kinetics of recombination of the light-induced state PQ to the neutral state PQ, the use of a 20.
View Article and Find Full Text PDFOptical detection of an individual single nano-object on an opaque substrate and direct determination of its absorption cross section is demonstrated using reflective spatial modulation spectroscopy. This method is applied to optical imaging and investigation of individual single-wall carbon nanotubes in the 1.6 nm diameter range on silicon substrates, which are also individually characterized by atomic force microscopy, scanning electron microscopy, and in situ micro-Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!