Background: Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after 18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group.
Methods/design: A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of 830 mW. The cranial region with an area of 400 cm will be irradiated for 30 min, giving a total dose per session of 3.74 J/cm. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation. Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to symptoms of depression, anxiety, and social demographics.
Discussion: LLLT has been demonstrated as a safe and effective technique in significantly improving the memory, attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI.
Trial Registration: ClinicalTrials.gov, NCT02393079 . Registered on 20 February 2015.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759360 | PMC |
http://dx.doi.org/10.1186/s13063-017-2414-5 | DOI Listing |
Prog Biophys Mol Biol
December 2024
Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi No. 106, Beykoz, Istanbul, 34820, Turkey. Electronic address:
The intersection of electromagnetic radiation and neuronal communication, focusing on the potential role of biophoton emission in brain function and neurodegenerative diseases is an emerging research area. Traditionally, it is believed that neurons encode and communicate information via electrochemical impulses, generating electromagnetic fields detectable by EEG and MEG. Recent discoveries indicate that neurons may also emit biophotons, suggesting an additional communication channel alongside the regular synaptic interactions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophotonics Medicine, Nove de Julho University (UNINOVE), Rua Vergueiro, São Paulo, SP, 01525-000, Brazil.
This pragmatic double-blind randomized clinical trial aims to assess the impact of vascular photobiomodulation on post-COVID-19 patients experiencing tension-type headache, orofacial pain, or both persisting for more than 3 months. Participants were divided into two groups: vascular photobiomodulation (VPBM) and simulated VPBM. Their conditions were evaluated using the Brief Pain Inventory (BPI), Visual Analogue Scale, and Headache Impact Test (HIT-6).
View Article and Find Full Text PDFCureus
November 2024
Department of Orthodontics, University of Bergen, Bergen, NOR.
Transversal maxillary deficiency is a prevalent skeletal issue that can be addressed using various devices and methods, including rapid maxillary expansion (RME) and surgically assisted rapid maxillary expansion (SARME). These techniques involve the separation and regeneration of the midpalatal suture (MPS). Laser therapies, such as low-level laser therapy (LLLT) and photobiomodulation (PBM), have been proposed to improve biological wound or bone healing.
View Article and Find Full Text PDFJ Photochem Photobiol B
January 2025
Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Cholesterol dysregulation, disorder of neuronal membrane lipid packing, and lipid rafts lead to the synthesis and accumulation of toxic amyloid-β (Aβ), contributing to the development of Alzheimer's disease (AD). Our study shows that near-infrared (NIR) transcranial photobiomodulation therapy (tPBMT) can reduce Aβ load and restore the properties of neuronal plasma membrane, including Aβ production, bilayer order, rafts, lipid content, and Ca channels during AD. Mice in the experiments were exposed to 808-nm LED for 1 h daily over 3 months.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada.
Background: Caesarean section (CS) is the most common inpatient surgical procedure performed in Canada. CS is known to cause moderate-to-severe pain, which is suggested to be associated with postpartum depression and persistent pain. Existing limitations in multimodal analgesia and conscious attempts to avoid opioids highlight the need for non-pharmacological strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!