Background: Epidemiological studies have shown that urban particulate matter (PM) increases the risk of respiratory infection. However, the underlying mechanisms are poorly understood. PM has been postulated to suppress the activation of airway epithelial innate defence in response to infection.
Methods: The effects of PM on antibacterial defence were studied using an in vitro infection model. The levels of antimicrobial peptides were measured using RT-PCR and ELISA. In addition to performing colony-forming unit counts and flow cytometry, confocal microscopy was performed to directly observe bacterial invasion upon PM exposure.
Results: We found that PM PM increased bacterial invasion by impairing the induction of β-defensin-2 (hBD-2), but not the other antimicrobial peptides (APMs) secreted by airway epithelium. PM further increases bacteria-induced ROS production, which is accompanied by an accelerated cell senescence and a decrease in bacteria-induced hBD-2 production, and the antioxidant NAC treatment attenuates these effects. The PM exposure further upregulated the expression of IL-8 but downregulated the expression of IL-13 upon infection.
Conclusions: PM promotes bacterial invasion of airway epithelial cells by attenuating the induction of hBD-2 via an oxidative burst. These findings associate PM with an increased susceptibility to infection. These findings provide insight into the underlying mechanisms regarding the pathogenesis of particulate matter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5759166 | PMC |
http://dx.doi.org/10.1186/s12931-017-0700-0 | DOI Listing |
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFBMC Res Notes
January 2025
Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Thyroid cancer is one of the most common cancers of the endocrine system. The incidence of this cancer has increased in many countries. Many cases of thyroid cancer do not have any symptoms.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Computers and Information, Minia University, Minia, Egypt.
This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China.
Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!