Ischemia/reperfusion-associated tubular cells injury in renal transplantation: Can metabolomics inform about mechanisms and help identify new therapeutic targets?

Pharmacol Res

FHU SUPORT, Limoges, Poitiers, Tours, France; University of Poitiers, Poitiers, France; INSERM UMR 1082, IRTOMIT, Poitiers, France; CHU Poitiers, Laboratory of Biochemistry, Poitiers, France.

Published: March 2018

Tubular cells are central targets of ischemia-reperfusion (I/R) injury in kidney transplantation. Inflammation and metabolic disturbances occurring within these cells are deleterious by themselves but also favor secondary events, such as activation of immune response. It is critical to have an in depth understanding of the mechanisms governing tubular cells response to I/R if one wants to define pertinent biomarkers or to elaborate targeted therapeutic interventions. As oxidative damage was shown to be central in the patho-physiological mechanisms, the impact of I/R on proximal tubular cells metabolism has been widely studied, contrary to its effects on expression and activity of membrane transporters of the proximal tubular cells. Yet, temporal modulation of transporters over ischemia and reperfusion periods appears to play a central role, not only in the induction of cells injury but also in graft function recovery. Metabolomics in cell models or diverse biofluids has the potential to provide large pictures of biochemical consequences of I/R. Metabolomic studies conducted in experimental models of I/R or in transplanted patients indeed retrieved metabolites belonging to the pathways known to be particularly affected. Interestingly, they also revealed that metabolic disturbances and transporters activities are in very close mutual interplay. As well as helping to select diagnostic biomarkers, such analyses could also contribute to identify new pharmacological targets and to set up innovative nephroprotective strategies for the future. Even if various therapeutic approaches have been evaluated for a long time to prevent or treat I/R injuries, metabolomics has helped identifying new ones, those related to membrane transporters seeming to be of particular interest. However, considering the very complex and multifactorial effects of I/R in the context of kidney transplantation, all tracks must be followed if one wants to prevent or limit its deleterious consequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2017.12.032DOI Listing

Publication Analysis

Top Keywords

tubular cells
20
cells injury
8
kidney transplantation
8
metabolic disturbances
8
proximal tubular
8
membrane transporters
8
cells
7
i/r
7
ischemia/reperfusion-associated tubular
4
injury renal
4

Similar Publications

Distal renal tubular acidosis (dRTA) is a significant clinical expression of Sjögren's syndrome (SS). While SS-related dRTA is traditionally linked to impaired H-ATPase, we report a unique case demonstrating selectively decreased anion exchanger 1 (AE1) expression with preserved H-ATPase expression. A 16-year-old girl with SS presented with muscle weakness, difficulty in ambulation, and severe hypokalemia.

View Article and Find Full Text PDF

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.

Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).

View Article and Find Full Text PDF

Human parietal epithelial cells as Trojan horses in albumin overload.

Sci Rep

January 2025

Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.

Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!