Purpose: To develop a mechanical model in which a contact lens is swept over ocular surface cells under conditions that mimic the force and speed of the blink, and to investigate the resulting biological changes.
Methods: A computer controlled mechanical instrument was developed to hold a dish containing 3D cultured stratified human ocular surface epithelial cells, across which an arm bearing a contact lens was swept back and forth repeatedly at a speed and force mimicking the human blink. Cells were subjected to repeated sweep cycles for up to 1 h at a speed of 120 mm/s with or without an applied force of 19.6 mN (to mimic pressure exerted by upper eyelid), after which the cell layer thickness was measured, the cell layer integrity was investigated using fluorescent quantum dots (6 and 13 nm) and the phosphorylation levels of various protein kinases were analyzed by human phospho-kinase arrays. Data for selected kinases were further quantitated by enzyme immunoassays.
Results: The thickness of the cell layers did not change after exposure to sweep cycles with or without applied force. Quantum dots (6 and 13 nm) were able to penetrate the layers of cells exposed to sweep cycles but not layers of untreated control cells. The phosphorylation levels of HSP27 and JNK1/2/3 increased for cells exposed to sweep cycles with applied force compared to untreated control cells.
Conclusions: The in vitro mechanical instrument is a useful tool to investigate the effects of blinking on the ocular surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtos.2017.12.002 | DOI Listing |
Nat Commun
January 2025
International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.
View Article and Find Full Text PDFGels
December 2024
Multimaterials and Interfaces Laboratory (LMI), CNRS UMR 5615, University Claude Bernard Lyon 1, University of Lyon, 6 rue Victor Grignard, 69622 Villeurbanne, France.
Temporomandibular disorders (TMD) are a public health problem that affects around 12% of the global population. The treatment is based on analgesics, non-steroidal anti-inflammatory, corticosteroids, anticonvulsants, or arthrocentesis associated with hyaluronic acid-based viscosupplementation. However, the use of hyaluronic acid alone in viscosupplementation does not seem to be enough to regulate the intra-articular inflammatory process.
View Article and Find Full Text PDFGels
November 2024
Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
A recrosslinkable CO-resistant branched preformed particle gel (CO-BRPPG) was developed for controlling CO injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO-BRPPG in open fractures, but its performance in high-permeability channels with pore throat networks remained unexplored. This study used a sandpack model to evaluate a micro-sized CO-BRPPG under varying conditions of salinity, gel concentration, and pH.
View Article and Find Full Text PDFEcol Evol
December 2024
Laboratory of Biomedical Science, Department of Veterinary Medicine, College of Bioresource Sciences Nihon University Fujisawa Kanagawa Japan.
Avian haemosporidian parasites and avian pox virus (APV) are well-known pathogens for their impact on avian populations, especially in oceanic islands where introduced pathogens show strong virulence for endemic and naïve birds. The Bonin Islands are a group of oceanic islands 1000 km south of Tokyo. Like the Hawaiian Islands, there are many endemic and endangered species as well as introduced species, which have greatly affected the native avian fauna.
View Article and Find Full Text PDFWhile zinc-ion and hybrid aqueous battery systems have emerged as potential substitutes for expensive lithium-ion batteries, issues like side reactions, limited electrochemical stability, and electrolyte leakage hinder their commercialization. Due to their low cost, high stability, minimal leakage risks, and a wide variety of modification opportunities, hydrogel electrolytes are considered the most promising solution compared to liquid or solid electrolytes. Here, we synthesized a dual-function hydrogel electrolyte based on polyacrylamide and poly(ethylene dioxythiophene):polystyrene (PPP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!