Rhabdomyolysis is a serious syndrome caused by skeletal muscle injury and the subsequent release of breakdown products from damaged muscle cells into systemic circulation. The muscle damage most often results from strenuous exercise, muscle hypoxia, medications, or drug abuse and can lead to life-threatening complications, such as acute kidney injury (AKI). Rhabdomyolysis and the AKI complication can also occur during crush syndrome, an emergency condition that commonly occurs in victims of natural disasters, such as earthquakes, and man-made disasters, such as wars and terrorism. Myoglobin released from damaged muscle is believed to trigger renal dysfunction in this form of AKI. Recently, macrophages were implicated in the disease pathogenesis of rhabdomyolysis-induced AKI, but the precise molecular mechanism remains unclear. In the present study, we show that macrophages released extracellular traps (ETs) comprising DNA fibers and granule proteins in a mouse model of rhabdomyolysis. Heme-activated platelets released from necrotic muscle cells during rhabdomyolysis enhanced the production of macrophage extracellular traps (METs) through increasing intracellular reactive oxygen species generation and histone citrullination. Here we report, for the first time to our knowledge, this unanticipated role for METs and platelets as a sensor of myoglobin-derived heme in rhabdomyolysis-induced AKI. This previously unknown mechanism might be targeted for treatment of the disease. Finally, we found a new therapeutic tool for prevention of AKI after rhabdomyolysis, which might rescue some sufferers of this pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm.4462DOI Listing

Publication Analysis

Top Keywords

macrophage extracellular
8
acute kidney
8
kidney injury
8
damaged muscle
8
muscle cells
8
aki rhabdomyolysis
8
rhabdomyolysis-induced aki
8
extracellular traps
8
muscle
6
aki
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!