Optical and transport properties of nonstoichiometric tantalum oxide thin films grown by ion beam deposition were investigated in order to understand the dominant charge transport mechanisms and reveal the nature of traps. The TaO films composition was analyzed by X-ray photoelectron spectroscopy and by quantum-chemistry simulation. From the optical absorption and photoluminescence measurements and density functional theory simulations, it was concluded that the 2.75 eV blue luminescence excited in a TaO by 4.45 eV photons, originates from oxygen vacancies. These vacancies are also responsible for TaO conductivity. The thermal trap energy of 0.85 eV determined from the transport experiments coincides with the half of the Stokes shift of the blue luminescence band. It is argued that the dominant charge transport mechanism in TaO films is phonon-assisted tunneling between the traps.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b16753DOI Listing

Publication Analysis

Top Keywords

charge transport
12
nature traps
8
tantalum oxide
8
dominant charge
8
tao films
8
blue luminescence
8
transport nature
4
traps oxygen
4
oxygen deficient
4
deficient tantalum
4

Similar Publications

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

B0AT1 (SLC6A19) is a major sodium-coupled neutral amino acid transporter that relies on angiotensin converting enzyme 2 (ACE2) or collectrin for membrane trafficking. Despite its significant role in disorders associated with amino acid metabolism, there is a deficit of comprehensive structure-function understanding of B0AT1 in lipid environment. Herein, we have employed molecular dynamics (MD) simulations to explore the architectural characteristics of B0AT1 in two distinct environments: a simplified POPC bilayer and a complex lipid system replicating the native membrane composition.

View Article and Find Full Text PDF

Toward Fast-Charging and Dendritic-Free Li Growth on Natural Graphite Through Intercalation/Conversion on MoS Nanosheets.

Adv Mater

January 2025

Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.

During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!