The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.7b00413DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
24
neurodegenerative diseases
8
raman
6
disease
6
spectroscopy
5
spectroscopy emerging
4
emerging tool
4
tool neurodegenerative
4
neurodegenerative disease
4
disease diagnosis
4

Similar Publications

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

The crystal phase of pseudocapacitive materials significantly influences charge storage kinetics and capacitance; yet, the underlying mechanisms remain poorly understood. This study focuses on tungsten oxide (WO), a material exhibiting multiple crystal phases with potential for energy storage. Despite extensive research on WO, the impact of different crystal structures on charge storage properties remains largely unexplored.

View Article and Find Full Text PDF

Analytical technologies and methods play a pivotal role in attribute understanding and control which are essential to the rapidly evolving field of pharmaceutical development and manufacturing. These technologies are advancing quickly, where innovations often involve both new scientific approaches and novel applications of established techniques. In many cases, the lack of harmonized global regulatory expectations presents challenges for the adoption of advanced technologies.

View Article and Find Full Text PDF

In vivo Raman spectroscopy for non-invasive transcutaneous glucose monitoring on animal models and human subjects.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China. Electronic address:

Non-invasive glucose monitoring represents a significant advancement in diabetes management and treatment as non-painful alternatives than finger-sticks tests. After developing an integrated Raman spectral system with a 785 nm laser, this study systematically explores the application of in vivo Raman spectroscopy for quantitative, noninvasive glucose monitoring. In addition to observing characteristic glucose spectral information from a mouse model, a strong spectral correlation was also recognized with the blood glucose concentration.

View Article and Find Full Text PDF

Alkane degradation coupled to Fe(III) reduction mediated by Gram-positive bacteria.

J Hazard Mater

December 2024

State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China. Electronic address:

Petroleum hydrocarbon contamination, such as n-alkanes, poses a significant global threat to ecosystems and human health. Microbial remediation emerges as a promising strategy for addressing this issue through both aerobic and anaerobic processes. Notably, the majority of anaerobic hydrocarbon degraders identified to date are Gram-negative bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!