A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements. | LitMetric

Alkaline-earth (Be, Mg and Ca) bonds at the origin of huge acidity enhancements.

Phys Chem Chem Phys

Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain.

Published: January 2018

The interaction between alkaline-earth derivatives with the general formula XM (X = H, F and Cl; M = Be, Mg and Ca) and a set of Lewis bases, including first and second-row hydrides, namely YH (Y = O, N, F, S, P and Cl) hydrides, as well as other typical cyclic organic bases, such as aniline, 1H-1,2,3-triazole, 1H-tetrazole and phenylphosphine, was investigated using the G4 ab initio composite method. Contrary to what was expected, it was found that the interactions involving Mg and Ca derivatives were not necessarily weaker than those between beryllium bonds. The origin is two-fold: larger deformation of the interacting systems when Be-derivatives are involved and appearance of secondary non-covalent interactions in the formation of some of the Mg- and Ca-containing complexes. Hence, the dissociation of the latter complexes may require higher enthalpies than that of the Be complexes. These deformations are triggered by a significant redistribution of electron density of the two interacting moieties, which also result in dramatic changes in the reactivity of the interacting compounds and in particular in the intrinsic basicity of the Lewis bases investigated, to the point that conventional bases, such as ammonia or aniline, upon complexation with MCl (M = Be, Mg and Ca), become stronger Brønsted acids than phosphoric acid, whereas other bases, such as 1H-tetrazole, become stronger acids than perchloric acid.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp07891aDOI Listing

Publication Analysis

Top Keywords

bonds origin
8
lewis bases
8
bases
5
alkaline-earth bonds
4
origin huge
4
huge acidity
4
acidity enhancements
4
enhancements interaction
4
interaction alkaline-earth
4
alkaline-earth derivatives
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!