The otoprotective effect of immobilized hydrocortisone was studied on the model of acute acoustic injury to the auditory analyzer in male Wistar rats. The effects of true solution and suspension where polyvinylpyrrolidone particles (100-500 nm) served as dispersed phase (hydrocortisone concentration 5 mg/kg). The agents were administered immediately after continuous acoustic stimulation: 5 kHz tone, 110 dB for 2 h. The hearing status was evaluated by the amplitude of otoacoustic emission at the distortion product frequency (4-6.4 kHz) 1 and 24 h and 7 days after acoustic stimulation. Single injection of hydrocortisone suspension caused a more pronounced therapeutic effect within 1 day after acoustic stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-018-3990-4DOI Listing

Publication Analysis

Top Keywords

acoustic stimulation
12
potentiation otoprotective
4
hydrocortisone
4
otoprotective hydrocortisone
4
hydrocortisone immobilized
4
immobilized povidone
4
povidone nanoparticles
4
nanoparticles conditions
4
conditions intravenous
4
intravenous injection
4

Similar Publications

Neural processing of naturalistic audiovisual events in space and time.

Commun Biol

January 2025

Western Institute for Neuroscience, Western University, London, ON, Canada.

Our brain seamlessly integrates distinct sensory information to form a coherent percept. However, when real-world audiovisual events are perceived, the specific brain regions and timings for processing different levels of information remain less investigated. To address that, we curated naturalistic videos and recorded functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data when participants viewed videos with accompanying sounds.

View Article and Find Full Text PDF

Studies have shown that a cross-modal association between listening to music and eating. This study aims to explore the influence of music style on individuals' food preferences and provide evidence for understanding multi-sensory research. Twenty-seven participants participated in the experiment which consisted of two parts.

View Article and Find Full Text PDF

While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.

View Article and Find Full Text PDF

Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.

View Article and Find Full Text PDF

Audiovisual information reaches the brain via both sustained and transient input channels, representing signals' intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!