Transition metal phosphide films were synthesized using a mild electrochemical method. Dibenzo-7-phosphanorbornadiene derivatives (XPA) are introduced as versatile precursors to amorphous metal phosphide electrocatalysts for proton reduction in acidic water. Homogeneous model reactions reveal distinct reactivity between XPA and nickel in different oxidation states, with Ni(0) resulting in NiP formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cc09003j | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Sahyadri Science College, Shivamogga, Karnataka, 574146, India.
Newly synthesized 1-bromo-2-(4-bromophenylsulfonate)-4,4-dimethyl-1-cyclohexenyl-6-one (CHD) as a potential anticorrosive agent in an acidic medium at an elevated temperature range of 305-335 K. This synthesized compound confirmed by spectral characterizations and it acts as a coating on mild steel surfaces in 1 M Hydrochloric acid (HCl) solution through electrochemical reactions. The synthesis of the compound has been discussed, and the Infrared (IR) and Nucleic Magnetic Resonance (NMR) spectral analysis confirmed the derivative.
View Article and Find Full Text PDFChem Asian J
January 2025
Mahidol University Faculty of Science, Chemistry, Rama VI Road, 10400, Bangkok, THAILAND.
Described herein is a facile electrochemical strategy for the generation of formaldehyde from N,N-dimethylacetamide (DMA) and water (H2O) toward a direct and site-selective N-hydroxymethylation of indoles and derivatives. Mechanistic studies suggested that N-(hydroxymethyl)-N-methylacetamide generated in situ from DMA/H2O under electrochemical conditions serves as a formaldehyde surrogate. The developed methodology features mild, base- and metal catalyst-free conditions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470.
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N) to ammonia (NH) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Inorganic Chemistry, Universidade Federal do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil.
This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!