In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔC) of both complexes, TIM-2PG and TIM-PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔC determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM-PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM-2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2018.01.001 | DOI Listing |
Eur Spine J
January 2025
Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Intervertebral disc (IVD) degeneration is the main cause of neck pain. Although conventional magnetic resonance imaging can detect morphological changes in intervertebral disc degeneration, it cannot provide accurate and objective evaluations. Magnetic resonance diffusion tensor imaging (DTI) reflects the microstructural changes in tissues by describing the diffusion of water molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA.
Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, 500078, India.
Flexible bis-benzimidazole-based V-shaped amphiphilic probes (1 and 2) that form a fluorescent nanoscopic assembly in aqueous media have been designed. The ion-binding properties of compound 1 are investigated in both polar protic (water) and aprotic (acetonitrile) solvents. In acetonitrile, the compound shows a distinct chromogenic response towards Hg (LOD: 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!