BRCA mutations and reproduction.

Fertil Steril

IVF Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.

Published: January 2018

Deleterious mutations in BRCA1 or BRCA2 genes have long been recognized as independent risk factors, mostly for breast and ovarian cancer. Numerous studies have evaluated the molecular processes involving these genes, the pathophysiology of BRCAness, follow up options and modes of prophylaxis. The fertility of BRCA carriers, however, has not been widely investigated. The aim of the present work is to review the literature pertaining to this issue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2017.12.004DOI Listing

Publication Analysis

Top Keywords

brca mutations
4
mutations reproduction
4
reproduction deleterious
4
deleterious mutations
4
mutations brca1
4
brca1 brca2
4
brca2 genes
4
genes long
4
long recognized
4
recognized independent
4

Similar Publications

Introduction: Alterations in homologous recombination repair (HRR) genes occur in 20%-30% of men with metastatic castration-resistant prostate cancer (mCRPC) which may increase sensitivity to platinum chemotherapy. Specifically, exceptional responses to platinum chemotherapy have been reported among patients with BRCA mutations. This study aimed to evaluate the efficacy of platinum chemotherapy in patients with mCRPC with and without HRR.

View Article and Find Full Text PDF

Purpose: This study focused on combining irinotecan with Poly (ADP-ribose) polymerase (PARP) inhibitors to explore the potential for novel combination therapeutics in small cell lung cancer (SCLC).

Materials And Methods: We selected 10 different SCLC cell lines with diverse mutational backgrounds in DNA damage response (DDR) pathway genes to evaluate the efficacy of the combination of three PARP inhibitors and irinotecan. After the cells were exposed to the drugs for seven days, cell viability was measured, and a combination index was calculated.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer.

View Article and Find Full Text PDF

Background: Ovarian Cancer is one of the leading causes of cancer death among women worldwide and the therapeutic landscape to treat it is constantly evolving. One of the major points of decision for the treatment choice is the presence of some genomic alterations that could confer sensitivity to the new available therapies including inhibitors of poly (ADP-ribose) polymerase (PARPi) with BRCA1 and 2 genes playing the most important role.

Methods And Results: We performed the search for any somatic and/or germline alteration in patient's samples by next generation sequencing (NGS).

View Article and Find Full Text PDF

Homologous recombination repair deficiency (HRD) is involved in the development of high-grade serous ovarian carcinoma (HGSOC) and its elevated sensitivity to platinum-based chemotherapy. To investigate the heterogeneity of the HRD-positive HGSOC we evaluated the HRD status, including BRCA mutations, genomic scar score, and methylation status of genes in 352 HGSOC specimens. We then divided the HRD-positive cohort into three molecular subgroups, the BRCA mutation cohort (BRCA+), BRCA1 methylation cohort (Meth+), and the rest of the HRD+ cohort (HRD+BRCA-Meth-), and evaluated their first-line chemotherapy response, benefit from olaparib, and progression-free survival (PFS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!