The use of biocides by industry, agriculture and households increased throughout the last two decades. Many new applications with known substances enriched the variety of biocidal pollution sources for the aquatic environment. While agriculture was the major source for a long time, leaching from building facades and preservation of personal care and cleaning products was identified as new sources in the last few years. With the different usage forms of biocidal products the complexity of legislative regulation increased as well. The requirements for risk assessment differ from one law to another and the potential risk of substances under different regulations might be underestimated. Still EC and predicted no-effect concentration (PNEC) values gained from testing with different species are the core of environmental risk assessment, but ecotoxicological data is limited or lacking for many biocides. In this study the biocides widely used in facade coatings and household products terbutryn, octhilinone and methylisothiazolinone were tested with the Daphnia magna acute immobilisation assay, the neutral red uptake assay and the ethoxyresorufin-O-deethylase (EROD) assay, performed with rainbow trout liver (RTL-W1) cells. Further, the MTT assay with the ovarian cell line CHO-9 from Chinese hamster was used as mammalian model. Octhilinone induced the strongest effects with EC values of 156μg/l in the D. magna assay, while terbutryn showed the weakest effects with 8390μg/l and methylisothiazolinone 513μg/l respectively. All other assays showed higher EC values and thus only weak effects. EROD assays did not show any effects. With additional literature and database records PNEC values were calculated: terbutryn reached 0.003μg/l, octhilinone 0.05μg/l and methylisothiazolinone 0.5μg/l. Potential ecotoxicological risks of these biocides are discussed, considering environmental concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.12.280 | DOI Listing |
Sci Total Environ
February 2024
Institute for Bioanalysis, Department of Applied Natural Sciences and Health, Coburg University of Applied Sciences and Arts, Coburg, Germany; Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany. Electronic address:
Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat.
View Article and Find Full Text PDFSci Rep
March 2021
Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79098, Freiburg, Germany.
Groundwater quality in urban catchments is endangered by the input of biocides, such as those used in facade paints to suppress algae and fungal growth and washed off by heavy rainfall. Their retention in storm water infiltration systems (SIS) depends, in addition to their molecular properties, on chemical properties and structure of the integrated soil layer. These soil properties change over time and thus possibly also the relevance of preferential flow paths, e.
View Article and Find Full Text PDFEnviron Int
April 2020
Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
In order to conduct a fast and comprehensive toxicity screening of pesticide transformation products (TPs), this study used a tiered approach by a combination of in silico and experimental methods to determine the probability to be of relevance for risk assessment. The six pesticides Boscalid, Penconazole, Diuron, Terbutryn, Octhilinone (OIT), and Mecoprop were used as model compounds. Identification of corresponding environmental known and unknown TPs were done by literature analysis and photolysis experiments in combination.
View Article and Find Full Text PDFSci Total Environ
June 2018
Aquatic Ecology and Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany. Electronic address:
The use of biocides by industry, agriculture and households increased throughout the last two decades. Many new applications with known substances enriched the variety of biocidal pollution sources for the aquatic environment. While agriculture was the major source for a long time, leaching from building facades and preservation of personal care and cleaning products was identified as new sources in the last few years.
View Article and Find Full Text PDFEnviron Pollut
October 2010
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!