LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

Bioresour Technol

Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:

Published: March 2018

The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m s) LEDs on day 7 and low light intensity (50 μmol m s) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.12.096DOI Listing

Publication Analysis

Top Keywords

biomass fatty
28
fatty acid
28
light intensity
20
power efficiency
16
acid carotenoid
12
carotenoid production
12
low light
12
efficiency biomass
8
fatty
8
acid
8

Similar Publications

Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 kilometers, ranging from the plateau to the estuary.

View Article and Find Full Text PDF

The current investigation focuses on the copyrolysis of L. (a nonedible oilseed, also known as Nahar) and polyethyelene terephthalate (PET) plastic waste to gain insights into the composition of pyrolysates and the thermal decomposition of complex and mixed feedstocks. The physicochemical properties of the feedstocks were studied through thermogravimetric analysis at a heating rate of 15 °C min, bomb calorimetry, and proximate/ultimate analysis.

View Article and Find Full Text PDF

Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.

View Article and Find Full Text PDF

Enhancing biomass and lipid productivities of Haematococcus pluvialis for industrial raw materials products.

Biotechnol Biofuels Bioprod

January 2025

Aquaculture Department, Faculty of Fisheries, Ege University, 35040, Izmir, Türkiye.

For biofuels and nutraceuticals, the green microalga Haematococcus pluvialis (Chlorophyceae) is a prospective source of biomass and lipids. This study examined how biomass production and lipid accumulation were affected by temperature (10 °C, 20 °C, and 30 °C) and potassium nitrate (KNO₃) concentrations (0.41 g/L, 0.

View Article and Find Full Text PDF

Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review.

Br Poult Sci

January 2025

LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.

1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!