The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m s) LEDs on day 7 and low light intensity (50 μmol m s) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.12.096 | DOI Listing |
Environ Res
January 2025
Humboldt-Universität zu Berlin, Institute of Biology, Ecology, 10115, Berlin, Germany.
Microbial communities, which are crucial for ecosystem function and sustainability, are under environmental pressure. Using phospholipid fatty acids (PLFAs) as a measure of microbial biomass and community structure, the responses of microorganisms to environmental drivers were studied in bank soil and sediment alongside the Yangtze River in China. Thirty-eight sites were investigated over a length of 5500 kilometers, ranging from the plateau to the estuary.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The current investigation focuses on the copyrolysis of L. (a nonedible oilseed, also known as Nahar) and polyethyelene terephthalate (PET) plastic waste to gain insights into the composition of pyrolysates and the thermal decomposition of complex and mixed feedstocks. The physicochemical properties of the feedstocks were studied through thermogravimetric analysis at a heating rate of 15 °C min, bomb calorimetry, and proximate/ultimate analysis.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Aquaculture Department, Faculty of Fisheries, Ege University, 35040, Izmir, Türkiye.
For biofuels and nutraceuticals, the green microalga Haematococcus pluvialis (Chlorophyceae) is a prospective source of biomass and lipids. This study examined how biomass production and lipid accumulation were affected by temperature (10 °C, 20 °C, and 30 °C) and potassium nitrate (KNO₃) concentrations (0.41 g/L, 0.
View Article and Find Full Text PDFBr Poult Sci
January 2025
LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.
1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!