Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Information from Ayurveda meeting the analytical challenges of modern technology is an area of immense relevance. Apart from the cerebral task of bringing together two different viewpoints, the question at the pragmatic level remains 'who benefits whom'.
Objective: The aim is to highlight the challenges in integration of information (Ayurvedic) and technology using test examples of Nuclear Magnetic Resonance (NMR) metabolomics and anti-HIV-1 potential of select Ayurvedic medicinal plants. The other value added objective is implications and relevance of such work for Ayurveda.
Materials And Methods: Six medicinal plants (Azadirachta indica, Tinospora cordifolia, Swertia chirata, Terminalia bellerica, Zingiber officinale and Symplocos racemosa) were studied using high resolution proton NMR spectroscopy based metabolomics and also evaluated for anti-HIV-1 activity on three pseudoviruses (ZM53 M.PB12, ZM109F.PB4, RHPA 4259.7).
Results: Of the six plants, T. bellerica and Z. officinale showed minimum cell cytotoxicity and maximum anti-HIV-1 potential. T. bellerica was effective against all the three HIV-1 pseudoviruses. Untargeted NMR profiling and multivariate analyses demonstrated that the six plants, all of which had different Ayurvedic pharmacological properties, showed maximum differences in the aromatic region of the spectra.
Conclusion: The work adds onto the list of potential plants for anti-HIV-1 drug molecules. At the same time, it has drawn attention to the different perspectives of Ayurveda and Western medicine underscoring the inherent limitations of conceptual bilinguism between the two systems, especially in the context of medicinal plants. The study has also highlighted the potential of NMR metabolomics in study of plant extracts as used in Ayurveda.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598850 | PMC |
http://dx.doi.org/10.1016/j.jaim.2017.06.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!